3,900 research outputs found

    Process-Based Statistical Models Predict Dynamic Estuarine Salinity

    Get PDF
    Climate change is increasing variation in freshwater input and the intensity of this variation in estuarine systems throughout the world. Estuarine salinity responds to dynamic meteorological and hydrological processes with important consequences to physical features, such as vertical stratification, as well as living resources, such as the distribution, abundance and diversity of species. We developed and evaluated two space-time statistical models to predict bottom salinity in Pamlico Sound, NC: (i) process and (ii) time models. Both models used 20-years of observed salinity and contained a deterministic component designed to represent four key processes that affect salinity: (1) recent and long-term fresh water influx (FWI) from four rivers, (2) mixing with the ocean through inlets, (3) hurricane incidence, and (4) interactions among these variables. Freshwater discharge and distance from an inlet to the Atlantic Ocean explained the most variance in dynamic salinity. The final process model explained 89% of spatiotemporal variability in salinity in a withheld dataset, whereas the final time model explained 87% of the variability within the same withheld data set. This study provides a methodological template for modeling salinity and other normally-distributed abiotic variables in this lagoonal estuary

    A Rapid Technique for Counting Cracks in Rocks

    Get PDF
    Using a scanning electron microscope (SEM) and an image analyzer, we have developed a technique for counting and measuring cracks in rocks which is more efficient than traditional techniques in which an operator performs all image analysis functions. The key aspect of the technique is that black-on-white tracings of fresh cracks, which can be made rather rapidly by an operator, are measured and digitized by an image analyzer. The most time-consuming step in the process has now become the generation of SEM micrographs and pertinent chemical (mineralogical) information, not the quantification of crack structure. The technique has been applied to two studies involving nuclear waste isolation in a granitic rock, Climax Stock (Nevada Test Site) quartz monzonite, a Cretaceous age rock which is structurally very inhomogeneous. One study detected a relationship between crack structure and distance from a hammer-drilled borehole; the other study was unable to detect a relationship between crack structure and gamma irradiation treatment in rocks loaded to near failure

    Magneto-x-ray effects in transition-metal alloys

    Get PDF
    We present a theory that combines the relativistic spin-polarized version of the Koringa-Kohn-Rostoker coherent-potential approximation theory and the macroscopic theory of magneto-optical effects enabling us to calculate magneto-x-ray effects from first principles. The theory is illustrated by calculation of Faraday and Kerr rotations and ellipticities for transition-metal alloys

    Effects of dietary curcumin or N-acetylcysteine on NF-κB activity and contractile performance in ambulatory and unloaded murine soleus

    Get PDF
    BACKGROUND: Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-κB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-κB by inflammatory stimuli, albeit by different mechanisms. In the present study, we tested the hypothesis that dietary curcumin or NAC supplementation would inhibit unloading-induced NF-κB activity in skeletal muscle and thereby protect muscles against loss of mass and function caused by prolonged unloading. METHODS: We used hindlimb suspension to unload the hindlimb muscles of adult mice. Animals had free access to drinking water or drinking water supplemented with 1% NAC and to standard laboratory diet or diet supplemented with 1% curcumin. For 11 days, half the animals in each dietary group were suspended by the tail (unloaded) and half were allowed to ambulate freely. RESULTS: Unloading caused a 51–53% loss of soleus muscle weight and cross-sectional area relative to freely-ambulating controls. Unloading also decreased total force and force per cross-sectional area developed by soleus. Curcumin supplementation decreased NF-κB activity measured in peripheral tissues of ambulatory mice by gel shift analysis. In unloaded animals, curcumin supplementation did not inhibit NF-κB activity or blunt the loss of muscle mass in soleus. In contrast, NAC prevented the increase in NF-κB activity induced by unloading but did not prevent losses of muscle mass or function. CONCLUSION: In conclusion, neither dietary curcumin nor dietary NAC prevents unloading-induced skeletal muscle dysfunction and atrophy, although dietary NAC does prevent unloading induced NF-κB activation

    Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus

    Get PDF
    BACKGROUND: Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-kappaB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-kappaB by inflammatory stimuli, albeit by different mechanisms. In the present study, we tested the hypothesis that dietary curcumin or NAC supplementation would inhibit unloading-induced NF-kappaB activity in skeletal muscle and thereby protect muscles against loss of mass and function caused by prolonged unloading. METHODS: We used hindlimb suspension to unload the hindlimb muscles of adult mice. Animals had free access to drinking water or drinking water supplemented with 1% NAC and to standard laboratory diet or diet supplemented with 1% curcumin. For 11 days, half the animals in each dietary group were suspended by the tail (unloaded) and half were allowed to ambulate freely. RESULTS: Unloading caused a 51-53% loss of soleus muscle weight and cross-sectional area relative to freely-ambulating controls. Unloading also decreased total force and force per cross-sectional area developed by soleus. Curcumin supplementation decreased NF-kappaB activity measured in peripheral tissues of ambulatory mice by gel shift analysis. In unloaded animals, curcumin supplementation did not inhibit NF-kappaB activity or blunt the loss of muscle mass in soleus. In contrast, NAC prevented the increase in NF-kappaB activity induced by unloading but did not prevent losses of muscle mass or function. CONCLUSION: In conclusion, neither dietary curcumin nor dietary NAC prevents unloading-induced skeletal muscle dysfunction and atrophy, although dietary NAC does prevent unloading induced NF-kappaB activation

    In Silico Modeling of the Rheological Properties of Covalently Cross-Linked Collagen Triple Helices

    Get PDF
    Biomimetic hydrogels based on natural polymers are a promising class of biomaterial, mimicking the natural extra-cellular matrix of biological tissues and providing cues for cell attachment, proliferation, and differentiation. With a view to providing an upstream method to guide subsequent experimental design, the aim of this study was to introduce a mathematical model that described the rheological properties of a hydrogel system based on covalently cross-linked collagen triple helices. In light of their organization, such gels exhibit limited collagen bundling that cannot be described by existing fibril network models. The model presented here treats collagen triple helices as discrete semiflexible polymers, permits full access to metrics for network microstructure, and should provide a comprehensive understanding of the parameter space associated with the development of such multifunctional materials. Triple helical hydrogel networks were experimentally obtained via the reaction of type I collagen with both aromatic and aliphatic diacids. The complex modulus G* was found from rheological testing in linear shear and quantitatively compared to model predictions. In silico data from the computational model successfully described the experimental trends in hydrogel storage modulus with either (i) the concentration of collagen triple helices during the cross-linking reaction or (ii) the type of cross-linking segment introduced in resulting hydrogel networks. This approach may pave the way to a step change in the rational design of biomimetic triple helical collagen systems with controlled multifunctionality
    corecore