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Chapter

Process-Based Statistical Models
Predict Dynamic Estuarine
Salinity
Christina L. Durham, David B. Eggleston and Amy J. Nail

Abstract

Climate change is increasing variation in freshwater input and the intensity of this
variation in estuarine systems throughout the world. Estuarine salinity responds to
dynamic meteorological and hydrological processes with important consequences to
physical features, such as vertical stratification, as well as living resources, such as the
distribution, abundance and diversity of species. We developed and evaluated two
space-time statistical models to predict bottom salinity in Pamlico Sound, NC:
(i) process and (ii) timemodels. Both models used 20-years of observed salinity and
contained a deterministic component designed to represent four key processes that
affect salinity: (1) recent and long-term fresh water influx (FWI) from four rivers,
(2) mixing with the ocean through inlets, (3) hurricane incidence, and (4) interac-
tions among these variables. Freshwater discharge and distance from an inlet to the
Atlantic Ocean explained the most variance in dynamic salinity. The final process
model explained 89% of spatiotemporal variability in salinity in a withheld dataset,
whereas the final timemodel explained 87% of the variability within the same with-
held data set. This study provides a methodological template for modeling salinity
and other normally-distributed abiotic variables in this lagoonal estuary.

Keywords: estuaries, space-time model, spatial covariance, freshwater inflow,
process-based model, salinity

1. Introduction

Estuarine salinity responds to dynamic meteorological and hydrological pro-
cesses [1] with important consequences to physical features, such as vertical strati-
fication, as well as living resources, such as the distribution, abundance and
diversity of species [2–5]. For example, relatively low mixing and subsequent
salinity stratification can lead to hypoxia in areas where organically-rich sediments
are not adequately re-oxygenated, causing emigration of mobile fauna and
degradation of ecosystem functions [5–9]. Rapid salinity changes, such as those
associated with large rainfall events or tropical cyclones, can cause death of
postlarval stages that are sensitive to unusually low salinities [10], and mass
seaward migration and subsequent hyper-aggregation of mobile, commercially
important species that can result in (1) shifts of juveniles from primary nursery
areas protected from trawling to secondary non-nursery areas vulnerable to fishing
pressure [11], (2) overharvest of adults due to increases in fishery catchability [12],
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or (3) bias fishery-independent surveys that leads to over-inflated population
abundance estimates [12]. Thus, the need to accurately predict the spatiotemporal
dynamics of salinity is unprecedented. The specific goals of this study were to:
(1) evaluate several statistical models to hindcast and forecast salinity in the second
largest estuary and largest lagoonal estuary in the United States—Pamlico Sound,
North Carolina, USA, and (2) assess salinity observations, predictions, and
standard errors under five hydrologic scenarios characteristic of historic and future
climate changes.

Pamlico Sound (PS) is a relatively shallow estuary with a mean depth of 4 m and
a maximum depth of 7 m. PS circulation is dominated by wind-driven currents and
freshwater input [13, 14]. Seasonal cyclonic storms are also an important climato-
logical component of the PS system. Since 1996, over three tropical storms or
hurricanes have passed within 300 km of the North Carolina coast per year [10].
Given the important role that salinity plays in the abiotic and biotic system compo-
nents of estuaries, and the likelihood that global climate change will increase the
frequency of extreme weather events (e.g., floods, droughts, hurricanes—[9, 15, 16]),
there is a critical need for models that can accurately forecast spatiotemporal
variation in salinity (e.g., [17]). A recent review by Iglesias et al. [17] highlights the
strengths of applying numerical modeling tools to characterize morpho-
hydrodynamic processes in estuarine and coastal systems. Numerical methods can
include a large variety of models and techniques, such as finite element, finite
difference, finite volume, or Eularian-Lagrangian models (e.g., [17–19]). Complex,
three-dimensional numerical models used for simulation and forecasting of
dynamic estuarine salinity can require significant effort and computation time that
is beyond the capabilities of many local management agencies. Local management
agencies sometimes require a quick turnaround time for long-term simulations or
short-term forecasts of estuarine salinity conditions, which could be produced using
location-specific statistical models. Therefore, the goals of this study were to (1)
develop and evaluate two types of statistical models of bottom salinity in PS, and (2)
apply the best models to produce sound-wide retrospective maps of bottom salinity
based on observational data. Bottom (as opposed to surface) salinity was chosen as
the variable of interest because it characterizes habitats of mobile demersal species
that are important members of benthic food webs, and that are the targets of
valuable commercial and recreational fisheries. Hereafter, the term ‘salinity’ will
always refer to bottom salinity unless otherwise noted.

1.1 Statistical models to predict dynamic salinity

Producing retrospective salinity maps based on observational data does not
require a statistical model based on hydrological mechanisms that affect salinity; it
is possible to perform individual spatial interpolations for each time period of
interest using an ordinary kriging model or a universal kriging model with a simple
spatial trend. Predicting salinity under a hypothetical set of conditions, however,
does require a model that can ‘learn’ about hydrological mechanisms based on
retrospective data (e.g., [20, 21]). Thus, the more comprehensive goal of this study
was to produce retrospective maps of salinity by developing a space-time statistical
model in which the mean function represents the hydrological mechanisms that
affect salinity, and a spatial covariance function makes up the difference between
the observed salinity data and the mean function’s salinity prediction.

To create such a model, we constructed explanatory variables that accounted for
the effect of riverine freshwater inflow (FWI), distance to inlet sources of oceanic
saltwater, and hurricane incidence on salinities at different locations in PS. We used
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a forward-selection process to choose which of these variables to keep in the model.
Standard errors based on the covariance function allowed for assessment of
strengths and weaknesses of the representation of the hydrology in the mean func-
tion. Since an additional goal of this study was to provide a template for researchers
to build process-based models of normally-distributed estuarine variables, we
considered only models that could be fit using procedures in the SAS® software
package, yet can be adopted to R-statistical software.

Other process-based models of PS salinity in the literature—all of which are
differential-equation-based deterministic models—provided important insights
into how different variables influenced spatiotemporal salinity variation in PS
([22, 23], and others). However, these models ultimately lacked the spatial resolu-
tion and/or coverage of the entire area of interest of this study, and none quantified
uncertainty at every space-time prediction location. For example, Xu et al. [24]
predicted surface and bottom salinity, and temperature at 30-second intervals over
a spatial grid with varying cell size (200–800 m2) in the Pamlico River Estuary
(PRE), a PS tributary, using a customized extension of the Environmental Fluid
Dynamics Code [25] to incorporate FWI from major tributary rivers, as well as tide
and wind effects on circulation. Although this model incorporated environmental
variation and produced salinity predictions suitable to assess long-term space-time
trends, the PRE makes up only 18% of the area of PS. Predicting salinity across the
entire PS using this model would require spatial domain expansion and re-
parameterization, and such extensions are not planned (J. Lin, NC State University,
pers. comm. on behalf of Xu et al. [24]).

Though we are unaware of researchers that have constructed space-time statis-
tical models of salinity in PS, there are examples of applying statistical models for
spatial prediction of salinity in other estuaries. For example, Rathbun [26] used
independent multiple linear regression models with spatially-correlated errors to
predict salinity and dissolved oxygen (DO) in Charleston Harbor, SC over a two-
week time period in 1988 as a function of spatial coordinates and distance to the
estuary mouth. Chehata et al. [27] performed three-dimensional spatial interpola-
tion of salinity and DO measurements in Chesapeake Bay. Qiu and Wan [20]
developed a salinity model based on time series analyses of salinity data for the
Caloosahatchee River Estuary, Florida, USA. The structure of their model consisted
of an autoregressive term representing the system persistence and an exogenous
term accounting for physical drivers including freshwater inflow, rainfall, and tidal
water surface elevation that cause salinity to vary. The model was calibrated and
validated using up to 20 years of measured data collected they found that the time
series model offers comparable or superior performance compared with its 3-D,
numerical counterpart. This model has been used as a tool for water resources
management projects relating to ecosystem restoration and water control in south
Florida [20]. Similarly, Ross et al. [21] examined the response of salinity in the
Delaware Estuary, USA to climatic variations using statistical models and long-term
(1950-present) records of salinity from the U.S. Geological Survey and the Haskin
Shellfish Research Laboratory. The statistical models included non-parametric
terms and were robust against auto-correlated and heteroscedastic errors. After
using the models to adjust for the influence of streamflow and seasonal effects on
salinity, several locations in the estuary showed significant upward trends in salin-
ity. Insignificant trends are found at locations that are normally upstream of the salt
front. The models indicate a positive correlation between rising sea levels and
increasing residual salinity, with salinity rising from 2.5 to 4.4 psu per meter of sea-
level rise. The results suggest that continued sea-level rise in the future will cause
salinity to increase regardless of any variation in fresh water influx [21]. Urquhart
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et al. [28] present the results of multiple statistical models that predicted daily,
gridded surface salinity at 1 km resolution across Chesapeake Bay, USA as a func-
tion of surface reflectance estimates of salinity from the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS), onboard the Aqua platform satellite. Eight
statistical methods were tested, and sea surface salinity was accurately predicted via
remote sensed products with an accuracy that was more than sufficient for many
physical and ecological applications [28].

None of these previous studies, however, attempted to explicitly represent the
hydrological processes by which fresh and saltwater mixing affects estuarine salin-
ity. In this paper, we describe the development of candidate explanatory variables
to represent mechanisms affecting PS salinity and how that development led to
consideration of two fundamentally different mean functions. We then describe the
forward selection process by which candidate variables were chosen to be retained
in the models, and how candidate covariance functions were selected to pair with
each mean function. Next, we examined maps of salinity observations, predictions,
and standard errors under five hydrologic scenarios, analyzed these results, and
provided overall implications of the findings.

2. Methods and results

2.1 Data and notation

We used bottom salinity values measured by the North Carolina Division of
Marine Fisheries (NC DMF) Pamlico Sound Trawl Survey Program 195 (the survey)
every June and September from 1987 to 2006. The survey is conducted only in June
and September each year. Designed to assess species abundance at depths over 2 m,
the survey uses a weighted stratified random sampling design. For each time period,
coordinates of stations are randomly generated within each of seven water body
strata, with more stations allocated to larger strata, for a total of 54 stations per time
period. Hereafter, we denote with S the spatial domain that includes all points
sampled within the seven strata mentioned over the entire 1987–2006 temporal
domain. Figure 1 shows the geographic location of each sampling station in S.
Salinity was measured using a YSI-85 multi-function meter at the beginning of each
trawl and recorded along with depth and spatial reference coordinates. All spatial
coordinates used in this analysis were converted from decimal degrees to northings
and eastings in nautical miles (nmi) from a reference point (the origin in Figure 1)
located southwest of S at 34.6°N, �77.1°W. Salinity is always reported using the
Practical Salinity Scale.

The temporal domain contains T = 40 time periods, or month/year combina-
tions, indexed by the subscript t, so that t ¼ 1, … ,T. A time period is approximately
2.5 weeks long, the time it takes to sample all stations. Since locations of the 54
stations sampled in each time period differed slightly, and since some data were
missing in each time period, let nt represent the number of sites in time period t. Site
refers to a specific spatial location nested within a particular time period and is
indexed using the subscript i where i ¼ 1, … , nt. The dataset included N ¼ 2100

total observations of salinity, where N ¼
PT

t¼1nt. Denoted with salit observed
salinity at site i in time period t.

The fresh water influx (FWI) data represented watersheds of the Neuse, Pam-
lico, Roanoke, and Chowan rivers, which comprise 80% of the land draining into PS
[29]. FWI observations were average daily river discharge rates collected by one
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US Geological Survey (USGS) gauge station per tributary (Figure 1): Neuse River
(NR) station 02089500 in Kinston; Tar-Pamlico River (TPR) station 02083500
in Tarboro; Roanoke River (RR) station 02080500 in Roanoke Rapids; and Ahoskie
Creek (AC) station 02053500 in Ahoskie, which gauges Chowan River inflow.
Discharge rates in ft3/s for every day during the time domain (7305 days) were
downloaded from the USGS Water Resources website for the state of North
Carolina (USGS 2009) and were converted to m3/s. For each river, the gauge
chosen was the furthest downstream gauge that recorded data over the entire
temporal domain.

2.2 Candidate explanatory variables

The creation of explanatory variables reflects the modeling context—the objec-
tives, the geographical features of the spatial domain, and the space-time coverage
and resolution of the data—but the general thought process can be modified by
other researchers in a different context. We index the term it as any variable that
varies in both space and time, and with t any variable that varies over time but is
constant over S within a time period.

2.3 Freshwater influx indices

Sixty-one days is the average freshwater residence time of the four major rivers
flowing into PS [30–32], accounting for the temporal lag between the upriver

Figure 1.
Pamlico Sound, NC and the Chowan, Roanoke, Pamlico, and Neuse Rivers. Green squares show the four river
gauge stations used in this study. Purple dots indicate all P195 trawl survey sample stations for the 1987–2006
time domain. The pink star indicates the reference point from which northings and eastings were calculated. As
referenced in Section 3.5, Parallel A is located at 35° 160 N latitude and meridian B is at 75° 420 W longitude.
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gauging of freshwater and the delivery of that water to S. Therefore, we defined the
long-term metric 2moFWI_rt for river r and time period twhere r ¼ 1, … , 4, and t ¼
1, … ,T ¼ 40 as the average daily discharge rate in the 61 days prior to mt, the first
day of the survey in time period t. Because Ramus et al. [33] calculated a seven-day
residence time for the Neuse and Pamlico Rivers after Hurricanes Dennis and Floyd
deposited 1 m of rainfall in eastern NC less than 2 weeks before the September 1999
survey, we defined the short-term metric 1wkFWI_rt, by averaging daily discharge
rates in the 7 days prior to mt .

Since freshwater from river r in time period t should have more of an effect
on salit the closer site i is to the river, a unique measure of the influence of
1wkFWI_rt and 2moFWI_rt for each site was formed by dividing each by dist_rit,
r ¼ 1, … , 4, the distance separating the gauge on river r from site i within
time period t:

1wkFWII_rit ¼
1wkFWI_rt

dist_rit
, and 2moFWII_rit ¼

2moFWI_rt
dist_rit

(1)

The coordinates of each gauge station were used to calculate distance because
the gauge was the location of the 1wkFWI_rt and 2moFWI_rt observations. Like all
distances in this study, dist_rit represents distance “as the crow flies” as opposed to
water-path distance. Though the superiority of using water-path distance when
modeling water-quality variables in stream and estuarine systems seems intuitive,
results from studies that compare these two distance metrics are inconclusive. For
example, Gardner et al. [34] found more accurate predictions of stream tempera-
tures when models incorporated water-path distance, but only when this distance
was modified and weighted by stream order. Peterson and Urquhart [35] predicted
various nutrient concentrations in 17 Maryland rivers and concluded that using
water-path distance works well when modeling certain nutrients, but not others,
and that the crow-flies distance appeared to be the most suitable distance measure
overall. Comparing the accuracy of predictions of water quality parameters gener-
ated from two different multiple linear regression models containing the explana-
tory variable “distance to inlet mouth”, Little et al. [36] found that predictions from
models using water-path distance were no more accurate than those from models
using crow-flies distance. None of these studies demonstrated marked predictive
improvement using water-path distance, therefore we used crow-flies distance
from each of the four river gauges to each of 2100 sample stations and over 6000
prediction locations.

The plot in Figure 2 of salit against Roanoke River 2moFWII_rit typifies the
relationships between salinity and each of the eight 1wkFWII_rit and 2moFWII_rit
variables. Larger values of the metric are associated with smaller values of salinity,
but groups of observations have different slopes. Closer examination revealed that
the different groups corresponded to different time periods. We attempted to
account for the different slopes in two ways, first by considering the 28 pair-wise
interactions among the 1wkFWII_rit and2moFWII_rit and second by considering
39 time-period indicator variables defined as

timeper_1t ¼
1 if t ¼ 1

0 otherwise

(

, … , timeper_τt ¼
1 if t ¼ τ

0 otherwise

(

, … , timeper_39t

¼
1 if t ¼ 39

0 otherwise

(
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(A fortieth indicator variable was not used because it would create a non-full-
rank design matrix, and the effect for the fortieth time period can be derived using
the intercept.) This latter consideration led to the creation of two distinct mean
function models: the process and time models. The first has process variables only,
and the second has process variables in addition to the time-period indicator vari-
ables to address the possibility that salinity is affected by some aspect of physical
phenomena that is not accounted for by any other variable in the model.

2.4 Saltwater mixing and tidal signal

Although salinity on the inner-continental shelf of the U.S. Southeast Atlantic
coast exhibits some spatial variability near PS [37], we follow Xie et al. [38] and
assume constant open ocean salinity. This assumption allows for modeling the
effect of ocean water mixing as a function of only the distance to inlet, as opposed to
distance interacting with the salinity of the ocean water, from each spatial location
in the sound to each of the major PS inlets: Oregon, Hatteras, and Ocracoke.
Exploratory analyses reveal that models using a single variable (distance to the
nearest inlet) rather than three variables (distances to each of the three inlets),
explains the same amount of variability in salinity when other explanatory variables
are also included. Therefore, we consider for inclusion in subsequent models the
variable closest_inlet_distit, defined to be the distance separating site i, sampled in
time period t, from the center of the most proximate inlet.

Figure 2.
Observed bottom salinity (psu) vs. the Roanoke River two-month relative freshwater influx index
(2moFWII_rit) in m3 s�1 km�1 from 1987 to 2006. Groups of values within the same time period exhibit
relationships with different slopes.
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2.5 Wind speed and direction

A prevailing wind field that is north/northeast from March to August and
south/southwest from September to February is the primary driver of currents in PS
[39]. Thus, wind speed and direction were incorporated into the modeling process
using the categorical variable montht, where

montht ¼
1 if t is in Sept

0 if t is in June

�

is used to examine the effects of seasonal wind patterns on the spatial distribu-
tion of salinity.

2.6 Evaporation and direct precipitation

Holding other factors constant, sound-wide salinity in time periods that experi-
ence more evaporation of water from the surface of PS would likely be higher than
those in time periods that experienced less evaporation, but no evaporation data
were available for the space-time domain of interest. Salinity in time periods for
which there was more direct precipitation into S should be lower than those in
lower-precipitation time periods, however precipitation data were only available at
two weather stations on the edges of PS from which information about individual
spatial locations within PS would be difficult to infer. Giese et al. [40] found that
direct precipitation constitutes only 8% of mean PS freshwater input, thus the
signal from riverine FWI should dominate in explaining salinity variability.
Therefore, we did not include evaporation or direct precipitation variables in
our models.

2.7 Spatial coordinates

Estuarine salinity varies over space such that functions of spatial coordinates
might explain variability in salinity not accounted for by the other variables.
Scatterplots of salinity versus easting and northing suggested that salinity is qua-
dratic in the former and cubic in the latter. The quadratic function of easting can be
explained by examining a west-to-east path through PS along the 35° 160 N parallel
(A in Figure 1): salinity should initially increase, reach a maximum at the saltwater
plume near Ocracoke and Hatteras Inlets, and decrease again on the other side of
the plume in the waters on the western shore of Hatteras Island near Buxton, NC.
The cubic function of northing is best described by examining a north-to-south path
along longitude of 75° 420 W (B in Figure 1), where salinity should increase travel-
ing south from Albemarle Sound, reach a local maximum near Oregon Inlet,
decrease continuing past the saltwater inlet plume, and increase again as the

Hatteras Inlet saltwater plume is reached. Thus, eastingit, easting
2
it, northingit,

northing2it, and the interactions northingit ∗ eastingit, northing
2
it ∗ eastingit,

northingit ∗ easting
2
it, and northing2it ∗ easting

2
it are considered as explanatory variables.

All coordinates are centered before they are squared or cubed by subtracting the
mean over all observations.

2.8 Hurricanes

Hurricanes can rapidly introduce large volumes of freshwater to estuaries via
riverine influx, push large volumes of saltwater in through inlets via storm surge,
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and alter circulation patterns through abrupt changes in wind speed and direction
[7, 10]. Hurricanes can also open new inlets to PS, which can alter current flow and
increase saltwater intrusion [41]. The variable 1wkFWII_rit should capture variabil-
ity in salinity due to hurricane-produced FWI. Three additional variables may
account for non-FWI-related variability in salinity due to hurricane passage. These
variables are unique to a given time period t but are constant over all sites i within t.
The continuous variable inverse_days_surveyt is the reciprocal of the number of days
between the most recent hurricane and mt, except when there is no hurricane
within the 61 days, and then it takes the value zero. The categorical variable
categoryt equals the category of the most recent hurricane rated on the Stafford-
Simpson scale (1, … , 5), but if no hurricane made landfall in the 61 days prior tomt,
it takes the value zero. Finally, the discrete variable num_stormst equals the number
of hurricanes making landfall in NC in the 61 days prior to mt.

2.9 Variable selection

Section 3 identifies 46 candidate explanatory variables for the process model
mean function: 1wkFWII_rit and 2moFWII_rit (8), plus selected pair-wise interac-
tions (explained below) (24); spatial coordinates, their powers, and specified inter-
actions (9); closest_inlet_distit; montht; and hurricane variables inverse_days_surveyt,
categoryt, and num_stormst. For the time model, there were an additional 39 time
period indicator variables. Some variables—in either model—may be redundant.
There is overlap among the hurricane variables, and spatial coordinates may not be
necessary if other variables explain more variability in salinity. The set of variables
included in the final model(s) should balance goodness-of-fit with parsimony.
We first describe the variable-selection process for the process model, then for the
time model.

2.10 Process model

The results of eight separate ordinary least squares linear regression models of
salinity make up the rows Table 1. The first five consist of an intercept and a single
explanatory variable: closest_inlet_distit, categoryt, inverse_days_surveyt, num_stormst,
andmontht. The sixth and seventh contain an intercept plus, respectively, the sets of
four short and long-term freshwater influx indices 1wkFWII_rit, r ¼ 1, … , 4f g, and
2moFWII_rit, r ¼ 1, … , 4f g. We treated the short and long-term sets of indices as

groups assuming that if an index evaluated for one river is meaningful, then it is
also meaningful for other rivers. We discuss the eighth row in Section 4.2.

Adjusted R2 is a modification of R2 that penalizes the number of explanatory
variables. While R2 increases as more variables are added to a model, adjusted R2

increases only if the added variable decreases the error sum of squares enough to
offset the loss in error degrees of freedom.

The model with the long-term freshwater influx indices had the largest adjusted
R2 at 0.38, followed by the model with the distance from the nearest inlet (0.34),
and the model with the short-term FWI indices (0.27). None of the other four
models explained more than 5% of the variability in salinity. We chose the model
with the long-term freshwater influx indices as the base upon which to build the
mean function.

To this base model we added the variable closest_inlet_distit since the model
containing this variable had the second-best performance, thus beginning a
forward-selection process. Each time we added a variable or set of variables to the
model, we kept it in the model if the new adjusted R2 exceeded the old. Variables
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from the seven initial models were then added in order of decreasing adjusted R2.
Following this procedure, the mean trend model grew to contain 10 variables
— 2moFWII_rit, r ¼ 1, … , 4f g, closest_inlet_distit, 1wkFWII_rit, r ¼ 1, … , 4f g, and
inverse_days_surveyt—with adjusted R2 0.57.

Because the effect of FWI from one river on a given location in PS could change
based on the FWI from another river during the same time period, we evaluated the
addition of the 6 pair-wise interactions among the four 1wkFWII_rit, the 6 pair-wise
interactions among the four 2moFWII_rit, and the twelve interactions between the
1wkFWII_rit and the 2moFWII_rit, excluding interactions of one river’s 1wkFWII_rit
with its own 2moFWII_rit. Despite a decrease in error degrees of freedom by 24,
adjusted R2 was 0.66, so the set was retained.

Spatial coordinate variables were evaluated last in groups according to their
polynomial order, with squared and cubic terms added before interactions. We
considered these variables last because we wanted to include them only if they
explained additional variability in the response after more interpretable variables
were included. We determined that including all variables except

northing2it ∗ easting
2
it increased the adjusted R2. The final process model mean func-

tion thus had an adjusted R2 of 0.73 and included the following:
2moFWII_rit, r ¼ 1, … , 4f g; closest_inlet_distit; 1wkFWII_rit, r ¼ 1, … , 4f g;

1wkFWII_rit ∗ 1wkFWII_qit, r 6¼ q
� �

; 2moFWII_rit ∗ 2moFWII_qit, r 6¼ q
� �

;

1wkFWII_rit ∗ 2moFWII_qit, r 6¼ q
� �

; inverse_days_surveyt; eastingit, easting
2
it,

northingit, northing
2
it, and interactions northingit ∗ eastingit, northing

2
it ∗ eastingit, and

northingit ∗ easting
2
it.

2.11 Time model

To build the time model, we followed the same procedure described above,
selecting for the base of the mean function a set of time period indicator variables
because a linear regression of salit on these variables had an adjusted R2 of 0.41
(Table 1). (Note that such a model is equivalent to fitting an ANOVA model using
the time periods as groups.) Again, we added other sets of explanatory variables in
order of decreasing adjusted R2. Before evaluating interactions, the mean trend time
model had an adjusted R2 of 0.78 and contained 48 variables:
timeper_τt, τ ¼ 1, … , 39f g, 2moFWII_rit, r ¼ 1, … , 4f g, closest_inlet_distit, and
1wkFWII_rit, r ¼ 1, … , 4f g. When interactions among the
timeper_τt, τ ¼ 1, … , 39f g and the 2moFWII_rit, r ¼ 1, … , 4f g were added, the

Explanatory variable or set of explanatory variables Adj R2

closest_inlet_distit 0.34

categoryt 0.049

inverse_days_surveyt 0.035

num_stormst 0.029

montht 0.015

1wkFWII_rit, r ¼ 1, … , 4 0.27

2moFWII_rit, r ¼ 1, … , 4 0.38

timeper_τt, τ ¼ 1, … , 39 0.41

Table 1.
Adjusted R2 for the eight initial linear regression models. All regressions include an intercept plus the variables
listed.
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model was not full rank (not all columns in the design matrix were linearly inde-
pendent). Because we created this second model to evaluate these interactions, we
removed the 1wkFWII_rit, r ¼ 1, … , 4f g, the most recent variable addition, to
include them. This new model, including the interactions, became the base since its
adjusted R2 (0.89) was larger than that of the previous mean trend time model
(0.78). After investigating spatial coordinate variables, the final mean trend time
model (below) had an adjusted R2 of 0.91 and included 204 variables:
timeper_τt, τ ¼ 1, … , 39f g, 2moFWII_rit, r ¼ 1, … , 4f g, closest_inlet_distit,

timeper_τt ∗ 2moFWII_rit;τ ¼ 1, … , 39;r ¼ 1, … , 4f g, eastingit, easting
2
it,northingit,

and northing2it. To avoid confusion later, note that the adjusted R2 of 0.73 for the
process model and 0.91 for the time model were based on fitting each model to the
full dataset. In the next section, we report R2 (not adjusted R2) based on a cross-
validation dataset.

2.12 Modeling spatially correlated error

The variable selection analyses above used ordinary least squares (OLS)
regression to model salinity as a function of explanatory variables. That model can
be written as

salit ¼ β0 þ β1x1it þ β2x2it þ⋯βPxPit þ εit, t ¼ 1, … , 40, i ¼ 1, … nt (2)

where xpit represents the value of the pth explanatory variable at space–time
location it, for p ¼ 1, …P, where P is the total number of explanatory variables.
β0, β1, … , βP represent the intercept and regression coefficients, and deviations
from the mean trend εit are assumed to be independent and identically distributed
εit � N 0, σ2ð Þ with mean 0 and variance σ2. The model can be equivalently written
as salit ¼ xTitβþ ειτ, , where xit is the Pþ 1ð Þ � 1 vector containing the values of
the explanatory variables at space-time location it, and β represents the
Pþ 1ð Þ � 1vector of regression coefficients. The same model written in matrix
form is

Y ¼ Xβþ ε, ε � N 0, σ2I
� �

, (3)

where bold print indicates vectors so that Y, ε, and 0 are N � 1 vectors
containing, respectively, all observations of salinity in the space–time domain, all
deviations from the mean function, and all zeros. X is the N � Pþ 1ð Þ design matrix
whose rows represent space-time locations and whose columns contain the values
of the explanatory variables (with a column of ones for the intercept), and I is the
N �N identity matrix. Since a histogram of salinity observations is somewhat
symmetric and bell-shaped, use of the normal distribution is justified.

Rarely, however, does the assumption of independent and identically distributed
errors hold for observations of natural phenomena associated with locations in
space and time. While it is intuitive that values of salinity located close together in
space should be similar, it is also generally the case that the deviations from the
mean function of observations located close together are similar. That similarity is
referred to as spatial covariance, and the spatial covariance between deviations
from the mean trend at two locations within the same time period can be modeled
as a function of the distance separating them. Including in the overall model both a
deterministic mean function and a spatial covariance function allowed predictions
of salinity at locations where there were no observations.
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Valid covariance functions ensure that the covariance matrix will be positive
definite, which, in turn, ensures that variances will be non-negative. Each covari-
ance function has a shape defined by a range parameter, a partial sill, and some-
times a nugget effect. Appendix Table A1 gives formulas for determining spatial
covariance according to the exponential, Gaussian, and spherical covariance func-
tions, each with and without a nugget effect. Figure 3 shows an example of the
spherical covariance function—the solid red line—fit to a sample covariogram—the
blue dots—of deviations from the process model for June 1994. The range parame-
ter—θ for the exponential and Gaussian covariance functions, ρ for spherical—is
related to the distance that must separate two sites before their deviations are
independent, where independence corresponds to a covariance of zero or virtually
zero. In Figure 3, the range is approximately 10 km. In the absence of a nugget
effect, the partial sill σ2 is the value of the covariance at distance zero—that is, it is
the variance of deviations from the mean—and in Figure 3 this value is approxi-
mately 2.5 squared units of salinity. In the presence of the nugget σ2n, there is a
discontinuity in the covariance function at distance zero, so that the intercept is
slightly greater than the limit of the smooth part of the function as distance
approaches zero. In this case, the variance of the deviations is equal to the sum of
the partial sill and nugget: σ2 þ σ2n. It may be the case that variance is higher when
values of deviations are higher. Since covariance parameters represent physical
quantities that may change over time, we used the capabilities of SAS® Proc Mixed
to allow a different partial sill and range parameter for each time period.

Model (3), modified to include spatial correlation, becomes

Y ¼ Xβþ ε, ε � N 0,Σð Þ, (4)

where Σ represents the N �N block-diagonal covariance matrix

Figure 3.
Sample covariogram for June 1994 calculated from process model residuals (blue dots). The solid red line
illustrates a spherical covariance function fit to the covariogram. Covariance is in units of salinity squared.
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Σ ¼

Σ1 0 0 0

0 Σ2 0 0

0 0 ⋱ 0

0 0 0 ΣT
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where zero matrices for off-diagonal elements indicate that deviations in one
time period are not correlated with those in another. We make this assumption
partially due to the long time span separating June and September, but also because
no SAS® procedure has the capacity to model such space-time correlation while at
the same time allowing every time period to have different spatial covariance
parameters and allowing a mean function to be fit. Diagonal elements
Σ1,Σ2, … ,Σt … ,ΣT are individual spatial covariance matrices for each time period
with dimensions nt � nt, and elements Σt½ �ij ¼ Cov εit, εjt

� �

representing the spatial

covariance between sites i and j in time period t.
Understanding how predictions of salinity and prediction standard errors are

generated from this model will make the results and analysis in Sections 6 and 7
easier to understand. To predict salinity at space–time locations where it is not
observed, the following results are needed. Superscripts differentiate between loca-
tions where salinity is observed and unobserved. Model (4), represents observa-
tions of salinity (by virtue of the dimensions of the vectors and matrices), but we
model salinity observations and unobserved values of salinity at other space-time
locations using a similar model, the joint distribution of unobserved and observed
salinity, given by

Yo

Yu

� �

� N
Xoβ

Xuβ

� �

,
Σ
o

Σ
ou

Σ
uo

Σ
u

� �� 	

: (5)

Here, Yo represents the N � 1 vector of salinity observations, and, letting Nu

represent the number of space-time locations at which we want to predict salinity,
Yu represents the Nu � 1 vector of unknown values of salinity at these locations. All
the symbols in (5) have the same meaning as in (4), except for the distinction
between observed and unobserved locations. The N �Nu matrix Σ

ou contains the
cross-covariance between observed and unobserved locations. Thus,

Σ
ou ¼

Σ
ou
1 0 0 0

0 Σ
ou
2 0 0

0 0 ⋱ 0

0 0 0 Σ
ou
T

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

and Σ
uo ¼ Σ

ouð ÞT. The elements Σ
ou
t


 �

ij
¼ Cov εoit, ε

u
jt

n o

also come from the spatial

covariance function.
Let ψ represent the vector that contains all spatial covariance parameters for

every time period—either 80 or 81 parameters depending on whether a nugget
effect is used. Standard normal distribution theory gives the distribution of
unobserved salinity Yu conditioned on knowing the values of observations Yo and
all of the parameter values:

Yu Yoj , β,ψ � N Xuβþ Σ
uo

Σ
oð Þ�1

Yo � Xoβð Þ, Σ
u � Σ

uo
Σ
oð Þ�1

Σ
ou

n o

: (6)
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The pipe symbol (|) means “given” or “conditioned on knowing the values of”
the terms following the pipe symbol. The terms before the comma represent the
mean of the multivariate normal distribution, which is used for the salinity predic-
tion, and the terms after the comma represent the variance-covariance matrix,
which is used for prediction standard errors. Salinity predictions are the sum of the
mean trend, Xuβ, and the spatial interpolation of observation deviations from the

mean trend, Σuo
Σ
oð Þ�1

Yo � Xoβð Þ. If the deviations Yo � Xoβð Þ are large for a given
time period, then the partial sill σ2t will be large for that time period, so that diagonal
elements of Σo and Σ

u will be large. For a given location, the prediction standard

error is the diagonal element of the matrix Σ
u � Σ

uo
Σ
oð Þ�1

Σ
ou. If the diagonal ele-

ments of Σo and Σ
u are large, then the diagonal elements of Σ

oð Þ�1 are small, and the
prediction standard error is a large number minus a small number. That is, the
prediction standard error will be high for time periods in which observation devia-
tions from the mean function are large. When observation deviations from the
mean trend are small, the reverse is true, and prediction standard errors tend to be
low for that time period.

The salinity predictor

Xuβþ Σ
uo

Σ
oð Þ�1

Yo � Xoβð Þ (7)

is an exact predictor: the prediction of salinity at a site where there is an obser-
vation will exactly equal the observation. For this reason, to determine which spatial
covariance function to use, we randomly selected 10% of the observations to with-
hold as a cross-validation dataset, the test dataset; the remaining 90% we term the
base dataset. For every combination of the two mean functions—process and time—
and the six spatial covariance functions in Appendix Table A1, we fit model (4) to
the base dataset, and predicted salinity values at the space–time locations of the test
dataset using the results given in (5) and (6). When the model predicted salinity to
be less than zero, we set the prediction equal to zero before calculating the following
statistics. Predictions of negative values could be avoided using a truncated normal
distribution, but SAS® Proc Mixed does not permit specification of this distribution.
The root mean squared error (RMSE) of predictions—with the same units as salin-
ity—are given in Table 2, along with the slope, intercept, and coefficient of deter-
mination (R2) from a regression of actual salinity values in the test dataset on
predictions of them. If predictions were perfect, this regression would have slope
equal to one, intercept equal to zero, and R2 equal to 1.

Salinity predictions are better when a spatial covariance function is combined
with either mean function. For example, of the time models, the exponential
covariance function with a nugget produced predictions with the lowest RMSE
(2.1), slope closest to one (0.92), and intercept closest to zero (1.55). Comparing
process models, the exponential and spherical, each with and without a nugget,
performed equally well, and better than the time models. To select the best model
from this group of four, we examined statistics based on how well the model fit the
base dataset. The model with an exponential covariance function with a nugget had
the lowest AIC (7580.0) and BIC (7711.7) and was thus chosen as the final model. It
explained 89% of variability in the test dataset and generated predictions with
RMSE 2.0.

Next, we fit this model using the full dataset, and produced retrospective maps
of salinity predictions and standard errors at evenly spaced 1 nmi (1.85 km) incre-
ments for each time period. Forty-two salinity predictions—less than 0.1% of the
total number of predictions—were negative and set to zero.
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2.13 Examining freshwater influx scenarios

To examine variations in the spatial distribution of salinity under drought,
average, and flood conditions, we classified freshwater influx from each river
within each time period (1wkFWI_rt and 2moFWI_rt) as LOW if it fell below the
25th percentile of observed FWI across all time periods, MODERATE if it fell
between the 25th and 75th percentiles, HIGH if it fell between the 75th and 95th
percentiles, and FLOOD if it fell above the 95th percentile. Next, we classified one-
week and two-month FWI for the entire time period as LOW (or HIGH) if at least
two rivers exhibited low (or high) inflow, MODERATE if at least three rivers
exhibited moderate inflow, and FLOOD if at least one river exhibited extremely
high (>95th percentile) inflow. These classifications are mutually exclusive, though
some of the 40 time periods did not fall into any of them. The first two columns of
Table 3 list the 16 combinations of classifications, and the third column shows the
classification and salinity rank for each time period. Time periods were ranked 1–40
by mean predicted salinity (1 = highest mean salinity; 40 = lowest).

Moderate-to-moderate FWI. June 2005 (Figure 4) experienced moderate FWI in
both the 2 months and 1 week prior to the survey in PS with predicted salinity
ranked 37th—the lowest of the moderate-to-moderate time periods. Legend colors
for model predictions in the left pane and observations in the upper right pane of
Figure 4 (as well as Figure 5A and B, 6A and B) are based on percentiles of the
distribution of observed salinity across all time periods: minimum to 5%; 5–10%;
10–25%; 25–50%; 50–75%; 75–90%; 90–95%; and 95% to maximum. From the left
pane of Figure 4, predicted salinity in June 2005 increased moving east across PS,

Model type �2 log

likelihood

AIC BIC RMSE

(psu)

Slope/β1 Intercept/β0 R2

Process IID 9935.9 9937.9 9943.5 2.9 0.98 0.84 0.74

Exponential 7430.7 7584.7 7714.7 2.0 0.95 1.03 0.89

Exponential + σ
2
n* 7424.0 7580.0 7711.7 2.0 0.96 0.96 0.89

Gaussian 8198.0 8356.0 8489.5 2.3 0.94 1.37 0.84

Gaussian + σ
2
n* 7532.0 7686.0 7816.0 2.1 0.94 1.15 0.87

Spherical 7570.0 7722.0 7850.4 2.0 0.95 1.07 0.88

Spherical + σ
2
n* 7571.6 7727.6 7859.3 2.0 0.96 0.93 0.89

Time IID 7077.5 7079.5 7084.9 2.6 0.83* 3.47* 0.83

Exponential Infinite

Exponential + σ
2
n 6217.1 6367.1 6493.7 2.1 0.92* 1.55* 0.87

Gaussian 6281.0 6433.0 6561.3 2.2 0.90* 1.98* 0.86

Gaussian + σ
2
n* 6214.0 6366.0 6494.4 2.2 0.91* 1.90* 0.86

Spherical 6199.6 6315.6 6479.9 2.2 0.91* 1.86* 0.86

Spherical + σ
2
n 6201.3 6357.3 6489.1 2.2 0.91* 1.86* 0.86

Process and time mean functions with no spatial covariance (IID) and with each of six covariance functions were used.
The symbol “σ2n” indicates that a nugget was included. Stars (*) indicate rejection of the appropriate null hypothesis
at the α = 0.05 level of significance: H01: σ

2
n = 0; H02: β1 = 1; H03: β0 = 0. The exponential plus nugget process model is

highlighted as it was chosen as the best model of PS salinity for our modeling context.

Table 2.
Summary statistics comparing salinity observations in the test dataset to predictions based on fitting models to
the base dataset.
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reaching a maximum just south of Oregon Inlet. We note the same east-west
salinity gradient when comparing this pane to the June 2005 map of observed
salinities (top right pane), indicating that prediction maps typically mirror trends
seen in observation maps. The area of highest predicted salinity corresponds to a
lone purple observation of 26.5 just south of Oregon Inlet (Figure 4). Plumes
of relatively higher salinity are evident in the vicinity of all three ocean inlets
(Figure 4).

The lower right pane of Figure 4 (as well as Figure 5A and B, 6A and B)
displays prediction standard errors (SE) with the same units as salinity. The same
eight percentile groups classify colors on the SE legend, here based on the distribu-
tion of prediction standard errors across all time periods. The transition from low SE
at sample sites to higher SE moving away from sample sites reflects the fact that the
exact predictor (6) reproduces observations, so confidence intervals closer to sam-
ple sites are narrower than those further away.

This spatial trend in SEs is further illustrated by comparing locations of high SE
in the same time period, which are also consistent over time. High SEs occur
between the mouths of the Neuse and Pamlico Rivers and along a margin of varying
width following the outline of the Outer Banks, areas within which sampling does
not occur (Figure 1). We note here that because SEs increase as distance from
sample site increases, we chose to generate only interpolated (and not extrapolated)

2mo_FWIrt 1wk_FWIrt Time periods and mean predicted salinity rank (mmyy, r)

Flood Flood (0603, 40), (0999*, 30)

High none

Moderate (0687, 28), (0689, 27)

Low None

High Flood (0903*, 39), (0690, 29)

High (0904*, 32)

Moderate (0698, 38), (0693, 36), (0697, 35)

Low None

Moderate Flood (0996*, 33)

High (0696, 26), (0900, 24)

Moderate (0605, 37), (0989, 31), (0601, 26), (0600, 22), (0604, 21), (0688, 16),

(0990, 13), (0692, 10)

Low (0694, 17)

Low Flood (0987, 18)

High (0695, 6)

Moderate (0905, 20)

Low (0997, 15), (0699, 12), (0901, 8), (0902, 7), (0993, 5), (0602, 4), (0988,

3), (0994, 1)

Only time periods that fit each scenario as defined in Section 6 are listed; the remaining 7 time periods were not
classified. Boldfaced time periods are examined in Section 6. Stars (*) indicate time periods in which hurricanes
occurred within the 61 days prior to the survey.

Table 3.
Sixteen combinations of 2mo_ and 1wk_FWIrt classifications; time periods that exhibit each set of conditions;
and mean predicted salinity rank (1 = highest).
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salinity predictions. In June 2005, as in all other time periods, predictions were
generated only for locations within S, which does not extend either to Albemarle
Sound or to the heads of the Neuse and Pamlico Rivers (Figure 4).

Low to low FWI in early and late-stage drought. June 1999 (Figure 5A) and June
2002 (Figure 5B)—which mark early and late stages of North Carolina’s 1998–2002
drought [42]—experienced low long- and short-term FWI with predicted salinity
ranking 12th and 4th, respectively. At every point in PS, predicted salinity in these
two time periods was higher than in June 2005, and predicted salinity was much
higher in June 2002 than June 1999, though both have similar values for 1wkFWI_rt
and 2moFWI_rt variables from three of the four tributary rivers. The difference may
be due to (1) the fact that in the fourth river, the Roanoke, 1wkFWI_rt and
2moFWI_rt in June 1999 were twice their values in June 2002, or (2) that by June
2002, NC had been experiencing drought conditions for 4 years (186 weeks) as
opposed to less than one (30 weeks) and that this cumulative FWI deficit became
more pronounced over time.

Though June 2002 salinity observations have a larger mean and greater variabil-
ity, the majority of prediction standard errors are less than 1.01. In June 1999,
however, SEs fell between 1.01 and 1.81 at all prediction locations except those that
were very close to observations. This result shows that the conditions affecting
salinity in PS were better represented by the mean function in June 2002 than they
were in June 1999.

Flood to flood FWI—with and without hurricanes. FWI was extremely high in
September 1999 (Figure 5A) as a result of the 500-year floods produced by Hurri-
canes Dennis and Floyd that occurred 24 and 12 days before the survey, respec-
tively. In June 2003 (Figure 5B), extremely high FWI was due to an eight-month
period of above-average precipitation totals prior to the survey. Though these are

Figure 4.
Salinity model predictions (left), prediction standard errors (bottom right), and P195 survey observations (top
right) for June 2005, classified as moderate-to-moderate FWI.
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the only two time periods categorized as flood-to-flood, predicted salinity in Sep-
tember 1999 ranks a surprisingly high 30th, while in June 2003 it ranks 40th.
Observed and predicted salinity for these two time periods are lower than those in
the low-FWI time periods of June 1999 and 2002, but in September 1999, salinity
was higher at most prediction locations, and more variable, than in moderate-FWI
June 2005. Water at locations near the two southerly inlets to PS was more saline in
September 1999 than in these same locations during moderate-FWI of June 2005
likely due to storm surge-generated inlet plumes. Salinity at locations near the
Neuse and Tar-Pamlico Rivers was similar to that in June 2005. Standard errors
were lower sound-wide in June 2003 than in September 1999. SEs in September
1999 were highest sound-wide relative to the other four time periods examined
(Figures 5 and 6).

Figure 5.
Salinity model predictions (left), prediction standard errors (bottom right), and P195 survey observations
(top right) for June 1999 (A) and June 2002 (B), both classified as low-to-low FWI.
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3. Discussion

Because water exchange between lagoonal estuaries and the open ocean can be
relatively restricted, there is a relatively high potential in systems like PS for changes
in precipitation patterns and storm frequencies associated with global climate change
to result in changes in salinity patterns and subsequent ecosystem alterations.
Changes in precipitation will affect the amount and timing of river flow, which will
impact nutrient cycling, estuarine flushing rates, and salinity. Increased storm activ-
ity may open new inlets, which would alter current flow, increase tidal action, and
allow a greater influx of seawater that carries with it both different chemical signals
and mobile species. Salinity is therefore a practical estuarine characteristic to use to
study the impacts of these changes, as both effects mentioned above include
enhanced water exchange that impacts overall estuarine salinity content [43, 44].

Figure 6.
Salinity model predictions (left), prediction standard errors (bottom right), and P195 survey observations
(top right) for September 1999 (A) and June 2003 (B), both classified as flood-to-flood FWI.
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We developed and evaluated two statistical models, using the best model to
hindcast salinity in PS. The process mean function combined with the exponential
covariance with a nugget explained 89% of the variability in a test dataset with a
RMSE of 2.0 and produced relatively accurate retrospective salinity maps under a
wide range of freshwater influx and system-state scenarios. Much of this accuracy
was due to allowing the range and partial sill parameters of the spatial covariance to
be time-period specific. We then examined variations in the spatial distribution of
salinity under varying freshwater influx (FWI) conditions such as drought, average
FWI, and flood conditions, and identified the following patterns. In years with
moderate FWI, the salinity gradient increased from west to east in PS as expected,
and was highest adjacent to the major inlets, with highest salinities near Oregon
Inlet. In years with low FWI indicative of drought conditions, the overall mean and
variance in salinity increased in PS. In years with floods, salinities displayed a high
degree of spatial variation, with salinities being lower near the tributaries as
expected, yet also displaying occasional sharp increases in salinity near inlets due to
influx of ocean water into PS via the major inlets.

3.1 Improvements to model predictions

For retrospective prediction purposes, model improvements could focus on
improvements to the mean trend, the covariance, or both, and such improvements
could be evaluated using the test dataset. A reasonable goal might be to increase R2

to 0.93 or to reduce RMSE to 1.5. Improvements for the purpose of prospective
prediction of salinity under hypothetical, unobserved conditions, a situation in
which spatial covariance among observation deviations cannot be used, would
entail improving the mean function exclusively. Locations and time periods with
high SEs highlight conditions not well-represented by the current mean function. A
reasonable goal here would be to produce a model for which all values of SE fall
beneath the current median (1.32).

Mean function. The mean function alone explained over two-thirds of the vari-
ability in salinity in both process and time models. While this is a noteworthy
accomplishment, there remains room for multiple improvements. High SE values in
Figure 5A show that the mean function is unable to capture the interaction between
high FWI in September 1999 and hurricane storm surges. One hurricane explana-
tory variable, inverse_days_surveyt, remained in the final process model. Its parame-
ter estimate was positive, reflecting that strong hurricane winds push more
saltwater into PS through inlets than would enter under typical seasonal wind
conditions, but alone it explained only 4% of salinity variability in the full dataset.
The inverse_days_surveyt, variable did not differentiate between a year in which a
single hurricane passed within 12 days of the survey and a year in which such a
hurricane followed another that passed 12 days earlier. A future effort might
attempt to account for cumulative build-up of storm surge on observed PS salinities.

Though closest_inlet_distit alone explained a third of the variability in salinity
over all time periods, variability in inlet-plume size across Figures 3–5 suggests that
this distance metric should be modified based on wind speed and direction, using
more finely resolved wind information than the montht variable. Devising a way to
use the u and v components of wind to interact with closest_inlet_distit could allow
both the size and the direction of the inlet plume to vary such that east-to-west
winds create different plume sizes and shapes than winds from the southeast-to-
northwest. Considerable exploratory analysis would be needed to determine what
pre-survey time lag should be considered to affect observed survey salinities.

Differences in both salinity values and SE estimates between early-stage drought
during June 1999 and late-stage drought during June 2002 suggest accounting for

20

Lagoon Environments Around the World - A Scientific Perspective



effects of FWI over a longer duration than 61 days. Doing so might explain differ-
ences in salinity patterns seen in time periods with similar one-week and two-
month FWI conditions. Molina [45] calculated an 11 month mean residence time for
freshwater in PS. We could incorporate this effect by adding a third freshwater
influx index to the mean function or by adding an autoregressive component to the
model so that salinity in a given time period was a function of mean salinity in the
previous time period. The first option would be tedious from a data-manipulation
standpoint, but much easier from a mathematical model-fitting standpoint, because
SAS® Proc Mixed could still be used. The second option necessitates a change in the
covariance function, as we can no longer assume that salinity deviations from the
mean function at a given space-time point were independent in time. This second
option would also require specialized hand-written code, as no current SAS® Proc
allows such a dynamic space-time model to be fit.

Differences in salinity patterns between June 1999 and June 2002, our two low-
to-low FWI time periods, could be attributed to differences in FWI from the Roa-
noke River, one of the two northern rivers whose connection to PS is indirect. This
observation warrants further investigation into the calculation of the FWII indices;
namely, an investigation of water-path distance as a possible substitute for crow-
flies distance between river gauges and sites in PS. Although we did not find a study
that demonstrated marked predictive improvement using water-path distance
under all circumstances ([36, 46], and others), it would be interesting in future
work to compare differences in PS salinity predictions using both distance methods.
Recall that Gardner et al. [34] noted more accurate predictions of stream tempera-
tures when models incorporated water-path distance, but only when this distance
was further modified and weighted by stream order. It might be the case that water-
path distance out-performs crow-flies distance in predicting estuarine salinity when
care is taken to make all explanatory variables as meaningful as possible. Develop-
ment of an automated procedure for calculating water-path distances similar to the
one used in [47] would make such an investigation more practically feasible.

Covariance function. Two mutually-exclusive improvements to the covariance
function, as implemented in SAS® Proc Mixed, could be investigated: using either
the Matern covariance function or an anisotropic covariance function to achieve
greater flexibility in each time period. The Matern covariance function has a
smoothing parameter in addition to partial sill and range parameters. When the
smoothing parameter takes the value of 0.5, the Matern covariance function is the
same as the exponential covariance function—as the smoothness parameter
approaches infinity, the covariance function approaches the Gaussian covariance
function. Using the Matern covariance function is thus equivalent to allowing a
third parameter to determine which two-parameter covariance function is appro-
priate, as opposed to using the same two-parameter covariance function for every
time period. The computational cost of this flexibility is high—in a similar model
with only four separate groups of covariance parameters, compared to the 40
groups in this paper—co-author Amy Nail experienced computation time of 2 h
(versus a 2 min run time using the two-parameter exponential covariance function
here). The added computational burden is due to the complex nature of the Matern
covariance function and to the necessity of estimating one additional covariance
parameter per time period (for a total of 40 additional parameters).

Another way to achieve flexibility while still specifying a single covariance func-
tion for every time period, would be to allow an anisotropic covariance function.
Geometric anisotropy allows for different range parameters in different directions.
For example, if the water current in PS were flowing directly north-to-south, two
points separated by a north-to-south vector might have more similar values of salinity
than would two points separated by a west-to-east vector of the same length.
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Fortunately, the parameterization of a geometric anisotropic covariance function is
such that if anisotropy were unnecessary, the parameters would take values that
effectively result in an isotropic covariance function. The cost of this added flexibility
is the need to estimate two additional covariance parameters per time period, for a
total of 80 additional parameters. Computation time might be less here than for
Matern, since anisotropic covariance functional forms are less complex.

4. Conclusions

We created a statistical model combining a process mean function with an
exponential spatial covariance function with a nugget to predict salinity in a
lagoonal estuary. This model can generate predictions of bottom salinity for Pamlico
Sound, NC that are more spatially-resolute than any previous bottom salinity pre-
dictions encountered in the literature for this system. The salinity maps produced
using the model are useful for researchers to build an intuitive understanding of
salinity dynamics under PS conditions covered by these 40 time periods. Salinity
predictions can also be used to inform future analyses including, but not limited to,
the examination of historical distribution patterns of estuarine species relative to
salinity variability and the prediction of salinity changes under various global
climate change scenarios.
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Appendix

See Table A1.

Name of

covariance

function

Cov εti, εtj
� �

¼

With nugget effect Without nugget effect

Exponential σ2nt I dij ¼ 0
� �

þ σ2t exp
�dij
θt

� 

σ2t exp
�dij
θt

� 

Gaussian
σ2nt I dij ¼ 0

� �

þ σ2t exp
�d2ij
θ2t

� �

σ2t exp
�d2ij
θ2t

� �

Spherical
σ2nt I dij ¼ 0

� �

þ σ2t 1�
3dij
2ρt

� 

þ
d3ij
2ρ3t

� �� �

Ι dij ≤ ρt
� �

σ2t 1�
3dij
2ρt

� 

þ
d3ij
2ρ3t

� �� �

Ι dij ≤ ρt
� �

Note: For all models, σ2nt , σ
2
t>0, and θt ≥0, �∞< ρ<∞, and dij is the distance separating sites i and j.

Note: I(statement) = 1 if statement is true and 0 otherwise.

Table A1.
Formulas for the three spatial covariance functions used in this analysis.
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