17 research outputs found

    Socio-economic assessement of farmers' vulnerability as water users subject to global change stressors in the hard rock area of southern India. The SHIVA ANR project

    Get PDF
    International audienceDemand for vulnerability assessments is growing in policy-making circles, to support the choice of appropriate measures and policies to reduce the vulnerability of water users and resources. Through the SHIVA ANR project, we are seeking a method to assess and map the vulnerability of farmers in southern India to both climate and socioeconomic changes, and secondly, to assess the costs and benefits associated with trends farmers' vulnerability in the medium and long-term. The project is focusing on southern India 's hard rock area, as in the geological context, both surface and ground water resources are naturally limited. We are also focusing on farming populations as these are the main water users in the area and rely exclusively on groundwater. The area covers southern India's semi-arid zone, where the rainfall gradient ranges from 600 mm to 1100 mm. Vulnerability is expected to vary according to local climatic conditions but also the socioeconomic characteristics of farming households. The SHIVA research team has been divided into six thematic groups in order to address the different scientific issues : downscaling the regional climate scenario, farm area projections, vulnerability assessments and quantification, vulnerability mapping, hydrological modelling and upscaling, and vulnerability impact assessements. Our approach is multidisciplinary to cater for for numerous inherent themes, and integrated to cater for vulnerability as a dynamic and multidimensional concept. The project 's first results after 10 months of research are presented below

    Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale

    Full text link
    Increasing water scarcity challenges conventional approaches to managing water resources. More holistic tools and methods are required to support the integrated planning and management of fresh water resources at the river basin level. This paper compares an index-based cost-effectiveness analysis (IBCEA) with a least-cost river basin optimization model (LCRBOM). Both methods are applied to a real case study to design a cost-effective portfolio of water demand and supply management measures that ensures compliance with water supply and environmental targets. The IBCEA is a common approach to select programmes of measures in the implementation of the EU Water Framework Directive. We describe its limitations in finding a least-cost solution at the river basin level and highlight the benefits from implementing a LCRBOM. Both methods are compared in a real case study, the Orb river basin, in the south of France. The performances of the programmes of measures selected by the two methods are compared for the same annual equivalent cost. By ignoring the spatial and temporal variability of water availability and water demands in the river basin and the interconnection among its elements, the aggregated approach used in the standard IBCEA can miss more cost-effective solutions at the river basin scale.This paper is based on work conducted as part of several projects over more than 6 years. It benefited from the financial and technical support of the Agence de l'Eau Rhone Mediteranee et Corse; Conseil General de l'Herault; Conseil Regional du Languedoc Roussillon et ONEMA. Funding was partly provided by the IMPADAPT project /CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economia y Competitividad) and European FEDER funds. Corentin Girard is supported by a grant from the University Lecturer Training Programme (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. We are very grateful to Y. Caballero (BRGM), S. Chazot (BRLi), E. Vier and F. Aigoui (GINGERGROUP) and L. Rippert and his team from the SMVOL for their help during the project and for the data provided. We thank as well the two anonymous reviewers, the Associated Editor and Editor-in-Chief of Water Resources Management, for their useful and encouraging comments during the review process.Girard-Martin, CDP.; Rinaudo, J.; Pulido-Velazquez, M. (2015). Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale. Water Resources Management. 29:4129-4155. https://doi.org/10.1007/s11269-015-1049-0S4129415529ACTEON (2011) Research report on the use of cost-effectiveness analysis in regard to the European water framework directive. Acteon PublishingAulong S, Bouzit M, Dörfliger N (2009) Cost–effectiveness analysis of water management measures in two river basins of Jordan and Lebanon. Water Resour Manag 23(4):731–753Balana BB, Vinten A, Slee B (2011) A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: key issues, methods, and applications. Ecol Econ 70(6):1021–1031Berbel J, Martin-Ortega J, MESA P (2011) A cost-effectiveness analysis of water-saving measures for the water framework directive: the case of the Guadalquivir river basin in southern Spain. Water Resour Manag 25(2):623–640Brouwer R, Hofkes M (2008) Integrated hydro-economic modelling: approaches, key issues and future research directions. Ecol Econ 66(1):16–22. doi: 10.1016/j.ecolecon.2008.02.009Caballero Y, Girard C (2012) Impact du changement climatique sur la ressource en eau du bassin versant de l’Orb. Rapport BRGM/RP-61319-FR. 40 p., 16 ill. (In French) http://infoterre.brgm.fr/rapports/RP-61319-FR.pdfCastelletti A, Soncini-Sessa R (2006) A procedural approach to strengthening integration and participation in water resource planning. Environ Model Softw 21:1455–1470Chazot S (2011) Perspectives d’evolution de la gestion des volumes stockes dans le barrage des Monts d’Orb. Rapport final, Novembre 2011. BRL Ingenierie. (in French) http://www.vallees-orb-libron.fr/wpcontent/ uploads/2012/12/etude-gestion-Monts-Orb-Rapport-V16.pdfCGP (Commissariat Général du Plan) (2005) Révision du Taux d’Actualisation des Investissements Publics, Rapport du groupe d’experts présidé par Daniel Lebègue, ParisDe Roo A, Burek P, Gentile A, Udias A, Bouraoui F, Aloe A, Bianchi A, La Notte A, Kuik O, Elorza Tenreiro J, Vandecasteele I, Mubareka S, Baranzelli C, Van Der Perk M, Lavalle C, Bidoglio G (2012) A multi-criteria optimisation of scenarios for the protection of water resources in Europe, Support to the EU Blueprint to Safeguard Europe’s Waters, JRC Scientific and policy report, European Commission. http://publications.jrc.ec.europa.eu/repository/handle/111111111/26672Dehnhardt A (2014) The influence of interests and beliefs on the use of environmental cost–benefit analysis in water policy: the case of German policy-makers. Env Pol Gov 24:391–404. doi: 10.1002/eet.1656EC (European Commission) (2000) Directive 2000/60/EC of the European parliament and of the council, of 23 October 2000, establishing a framework for community action in the field of water policy. Off J Eur Econ L 327/1, 22.12.2000. http://europa.eu.int/comm/environment/water/water-framework/index_en.htmlEC (European Commission) (2007) Addressing the challenge of water scarcity and droughts in the European Union. Communication from the Commission to the Council and the European Parliament, COM(2007) 414, BrusselsEC (European Commission) (2012) A Blueprint to Safeguard Europe’s Water Resources, European Commission, Brussels, 14.11.2012, COM(2012) 673 finalEEA (European Environment Agency) (2012) European waters - assessment of status and pressures, EEA Report No 8/2012, EEA Copenhagen, 2012 http://www.eea.europa.eu/publications/european-waters-assessment-2012EEA (European Environment Agency), 2012b. Towards efficient use of water resources in Europe, EEA Report No 1/2012, EEA Copenhagen, 2012 http://www.eea.europa.eu/publications/towards-efficient-use-of-waterEl Geriani AM, Essamin O AM, Gijsbers PJA, Loucks DP (1998) Cost-effectiveness analyses of Libya’s water supply system. J Water Resour Plann Manage 124:320–329Garber AM, Phelps CE (1997) Economic foundations of cost-effectiveness analysis. J Health Econ 16:1–31Gerasidi A, Katsiardi P, Papaefstathiou N, Manoli E, Assimacopoulos D (2003) Cost-effectiveness analysis for water management in the island of Paros, Greece. 8th International Conference on Environmental Science and Technology. Lemnos Island, Greece, 8–10 September 2003Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207Girard C, Rinaudo JD, Pulido-Velazquez M, Caballero Y (2015) An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario. Environ Model Softw 69:42–54. doi: 10.1016/j.envsoft.2015.02.023Girard C, Pulido-Velazquez M, Rinaudo J-D, and Caballero, Y, in press, Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale (in press, doi: 10.1016/j.gloenvcha.2015.07.002 )Griffin RC (1998) The fundamental principles of cost-benefit analysis. Water Resour Res 34(8):2063–2071. doi: 10.1029/98WR01335EU-WFD , 2000Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375:627–643Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18:14–20Heinz I, Pulido-Velazquez M, Lund JR, Andreu J (2007) Hydro-economic modelling in river basin management: Implications and applications for the European water framework directive. Water Resour Manag 21:1103–1125Hoang T, Maton L, Caballero Y, Rinaudo J-D (2012) Impact du changement climatique sur le besoin en eau d’irrigation dans l’Ouest de l’H erault. Rapport BRGM RP-61311-FR. 36 pp (in French). http://infoterre.brgm.fr/rapports/RP-61311-FR.pdfInterwies E, Kraemer A, Kranz N, Görlach B, Dworak T (2004) Basic principles for selecting the most cost-effective combinations of measures for inclusion in the programme of measures as described in Article 11 of the Water Framework Directive-Handbook, Research Report 202 21 210 UBA-FB 000563/E. Federal Environmental Agency, BerlinInterwies E, Görlach B, Strosser P, Ozdemiroglu E, Brouwer R (2005) The case for valuation studies in the Water Framework Directive, Final report, Project WFD55. Sniffer reportLabadie JW (2004) Optimal operation of multi-reservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111Lescot J-M, Bordenave P, Petit K, Leccia O (2013) A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environ Model Softw 41:107–122Loucks DP, van Beek E (2005) Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. UNESCO, ParisLoucks DP, Kindler J, Fedra K (1985) Interactive water resources modeling and model use: an overview. Water Resour Res 21:95–102Madani K (2010) Game theory and water resources. J Hydrol 381:225–238Martin-Carrasco F, Garrote L, Iglesias A, Mediero L (2013) Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions. Water Resour Manag 27:1693–1705. doi: 10.1007/s11269-012-0081-6Martin-Ortega J (2012) Economic prescriptions and policy applications in the implementation of the European water framework directive. Environ Sci Policy 24:83–91Martin-Ortega J, Balana BB (2012) Cost-effectiveness analysis in the implementation of the water framework directive: a comparative analysis of the United Kingdom and Spain. Eur Water 37:15–25Matrosov ES, Padula S, Harou JJ (2013) Selecting portfolios of water supply and demand management strategies under uncertainty—contrasting economic optimisation and ‘robust decision making’ approaches. Water Resour Manag 27:1123–1148. doi: 10.1007/s11269-012-0118xMEEDDT (Ministère de l’écologie, de l’énergie, du développement durable et de l’aménagement du territoire) (2008) Circulaire du 30 juin 2008 relative à la résorption des déficits quantitatifs en matière de prélèvement d’eau et gestion collective des prélèvements d’irrigation NOR : DEVO0815432C, Bulletin officiel du Ministère de l’écologie, de l’énergie, du développement durable et de l’aménagement du terittoire, Paris, 2008 (In French)Messner F (2006) Guest editorial: applying participatory multicriteria methods to river basin management: improving the implementation of the water framework directive. Environ Plan C: Gov Policy 24(2):159–167Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Stepwise development of a two-parameter monthly water balance model. J Hydrol 318:200–214. doi: 10.1016/j.jhydrol.2005.06.014Padula S, Harou JJ, Papageorgiou LG, Ji Y, Ahmad M, Hepworth N (2013) Least economic cost regional water supply planning-optimising infrastructure investments and demand management for south east England’s 17.6 million people. Water Resour Manag 27:5017–5044. doi: 10.1007/s11269-013-0437-6Pagé C, Terray L (2010) Nouvelles projections climatiques à échelle fine sur la France pour le 21ème siècle : les scénarii SCRATCH2010. Technical Report TR/CMGC/10/58, SUC au CERFACS, URA CERFACS/CNRS No1875CS, Toulouse, France ( http://www.cerfacs.fr/~page/work/scratch/ ). (In French)Peña-Haro S, Pulido-Velazquez M, Sahuquillo A (2009) A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. J Hydrol 373:193–203Peña-Haro S, Llopis-Albert C, Pulido-Velázquez M, Pulido-Velázquez D (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J Hydrol 392:174–187Pulido-Velázquez M, Sahuquillo A, Ochoa JC, Pulido-Velázquez D (2005) Modeling of stream-aquifer interaction: the embedded multireservoir model. J of Hydrology 313(3-4):166–181Pulido-Velázquez M, Sahuquillo A, Andreu J (2006) Economic optimization of conjunctive use of surface and groundwater at the basin scale. J Water Resour Plan Manag 132(6):454–467Pulido-Velazquez M, Andreu J, Sahuquillo A, Pulido-Velazquez D (2008) Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol Econ 66:51–65Pulido-Velázquez M, Andreu J, Sahuquillo A, Pulido-Velazquez D (2008) Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol Econ 66(1):51–65Rinaudo J-D, Maton L, Caballero Y (2010) Cost-effectiveness analysis of a water scarcity management plan: considering long term socio-economic and climatic changes. Conference on Economics of drought and drought preparedness in a climate Change Context. Istambul, 3-7 March 2010. FAO, ICARDA, CEIGRAM, CHIEAM, Ministry of agriculture TurkeyRinaudo J-D, Neverre N, Montginoul M (2012) Simulating the impact of pricing policies on residential water demand: a southern France case study. Water Resour Manag 26:2057–2068Rinaudo J-D, Aulong S (2014) Defining groundwater remediation objectives with cost-benefit analysis: does it work ? Water Resour Manag 28(1):261–278Rinaudo J D, Girard C, Vernier de Byans C (2013), Analyse coût efficacité du programme de mesures de gestion quantitative : Application de deux méthodes au bassin versant de l’Orb Rapport BRGM. Available at http://infoterre.brgm.fr/rapports/RP-62713-FR.pdf (In French)Rinaudo J-D, Noel Y, Marchal J-P, Lamotte C (2013) Evaluation du coût de mobilisation de nouvelles ressources en eau souterraine dans l’Ouest de l’Hérault. Rapport BRGM-RP- 61794-FR http://infoterre.brgm.fr/rapports/RP-61794-FR.pdf (In French)ROSENTHAL E (2012) GAMS, A User’s Guide Tutorial by Richard E. Rosenthal. GAMS Development Corporation, Washington, DCSMVO (Syndicat Mixte de la Vallée de l’Orb) (2013) Contrat de rivière Orb-Libron, 2011–2015, Dossier définitif, Dossier M001 8 03 039 / EV. http://www.vallees-orb-libron.fr/wp-content/uploads/2012/12/dossier-definitif-contrat-riviere-orb-libron-11-15.pdf (In French)Udías A, Efremov R, Galbiati L, Cañamón I (2012) Simulation and multicriteria optimization modeling approach for regional water restoration management. Ann Oper Res 1–18Van Engelen D, Seidelin C, van der Veeren R, Barton DN, Queb K (2008) Cost-effectiveness analysis for the implementation of the EU Water Framework Directive. Water Policy 10(3):207–220Vier E, Aigoui F (2011) Etude de definition des debits d’ etiage de reference pour la mise en oeuvre d’une gestion quantitative de la ressource en eau dans le bassin de l’Orb. Rapport provisoire phases 1 et 2. Avril 2011. Syndicat mixte de la vallee de l’Orb. (in French)Vernier de Byans M, Rinaudo JD (2012) Scénarios d’évolution de la demande en eau potable à l’horizon 2030 dans l’Ouest Hérault. Rapport BRGM/RP-61317-FR.Brgm : Orléans. 51 p + ann. Available at http://infoterre.brgm.fr/rapports/RP-61317-FR.pdfVoinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25:1268–1281Ward FA (2009) Economics in integrated water management. Environ Model Softw 24(8):948–958WATECO (WORKING GROUP 2.6) (2003) Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document no.1.Economics and the Environment - The implementation Challenge of the Water Framework DirectiveWhite SB, Fane SA, Robinson D (2003) The use of levelised cost in comparing supply and demand side options for water supply and wastewater treatment. Water Supply 3(3):185–192Wright SAL, Fritsch O (2011) Operationalising active involvement in the EU water framework directive: why, when and how? Ecol Econ 70:2268–2274Wurbs, RA (1996) Modeling and Analysis of Reservoir System Operation, Prentice HallZhou Y, Tol RSJ (2005) Evaluating the costs of desalination and water transport. Water Resour Res 41:1–1

    Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model

    No full text
    Appropriate groundwater resource management becomes a priority for the States of the semi-arid southern India. Because of the highly increasing groundwater demand, the number of drought-prone regions where the groundwater resource is classified as over-exploited by the Government is critically increasing. Thus there is a need to develop quantitative methodologies adapted to the regional context that are capable to assess water resources at watershed scale and the impact of management measures. This study demonstrates the calibration and use of an integrated water resource assessment model (SWAT) in an 84 km(2) representative semi-arid crystalline watershed of southern India with no perennial surface water source. The model can reproduce (i) the recharge rate estimates derived independently by a groundwater balance computation, (ii) runoff and surface water storage occurring in tanks that spread along the drainage system, (iii) groundwater table fluctuations monitored at a monthly time step. Results show that even if the calibration period (2006-2010) was more humid than long-term average, the watershed is sensitive to the monsoon inter-annual variability with water-stress during the dry years and an associated loss in agricultural production. The impact of these dry years is spatially variable with higher vulnerability for sub-basins having proportionally larger irrigated paddy areas, lower groundwater resource, and/or lower recharge potential (i.e., due to land use and repartition of percolation tanks). The scope for additional recharge by means of managed aquifer recharge structures is limited and demand-side management measures are needed to mitigate pumping. A wishful management objective may be to see groundwater reserves as a supplementary resource in case of monsoon failure and not as the main water resource to be used indiscriminately. SWAT proved to be an adequate modeling framework for the simulation of water resource in semi-arid hard-rock context where groundwater vertical fluxes largely prevail over regional lateral flows at km-scale. It provides interesting capabilities for water availability mapping and the simulation of different types of scenarios (e.g., land use changes, climate change)

    Development of a tool for managing groundwater resources in semi-arid hard rock regions: application to a rural watershed in South India

    No full text
    Until recently, aquifers located in hard rock formations (granite, gneiss, schist) were considered as a highly heterogeneous media, and no adequate methodology for groundwater management was available. Recent research studies have shown that when hard rocks are exposed to regional and deep-weathering processes and when the geology is relatively homogenous, a typical hard rock aquifer is made of two main superimposed hydrogeological layers each characterized by quite homogeneous specific hydrodynamic properties: namely the saprolite and the fissured layers. Therefore, for these cases, hard rock aquifers can be considered as a multi-layered system. Based on these works, an operational decision support tool (DST-GW ) designed for the management of groundwater resources in hard rock area under variable agro-climatic conditions has been developed. The tool focuses on the impact of changing cropping pattern, artificial recharge and rainfall conditions on groundwater levels at the scale of small watersheds (10 to about 100 km2 in case well-developed weathering profile). DST-GW is based on the groundwater balance and the 'water table fluctuation method', which are well-adapted methods in hard rock and semiarid contexts. Based on field data from an overexploited South Indian watershed (58 km2), the model allows calibrating, at watershed scale, the variation in specific yield of the aquifer with depth, as well as the rainfall-aquifer recharge relationship. Seasonal basin-scale piezometric levels are computed with an average deviation of ?0?56 m compared to measurements from 2001 to 2005. The model shows that, if no measure is taken, the water table depletion will induce the drying-up of most of the exploited borewells by the year 2012. Scenarios of mitigation measures elaborated with the tool show that change in cropping patterns could rapidly reverse the tendency and lead to a sustainable management of the resource. This work presents the developed tool and particularly the hydraulic model involved in and its application to a case study. However, the purpose tool is applicable at watershed scale but not design for the groundwater management of a very small area or for a single borewell

    Farmers' vulnerability assessment to global changes in South India. Preliminary results in Gajwel small watershed

    No full text
    International audienceThe SHIVA-ANR project aims at assessing the vulnerability of rural water users under stressors of global changes in the hard rocks area of South India. Determining present and future vulnerability of farmers to global changes calls for the creation of a context specific vulnerability index. A method is tested in small watershed of Gajwell (Andhra Pradesh)
    corecore