40 research outputs found
Service-based analysis of biological pathways
Background: Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results: Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion: Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper
Receptor activity-modifying proteins 2 and 3 generate adrenomedullin receptor subtypes with distinct molecular properties
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins (RAMP) 2 and 3, respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMPs 2 and 3 on the activation and conformation of the CLR subunit of AM receptors we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors and determined the effects on cAMP signalling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modelling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket, and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Human Disease-Drug Network Based on Genomic Expression Profiles
BACKGROUND: Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. CONCLUSIONS/SIGNIFICANCE: We have automatically generated thousands of disease and drug expression profiles using GEO datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug target/pathway identification
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Genetic and Biochemical Analysis of Phosphatase Activity of Escherichia coli NRII (NtrB) and Its Regulation by the PII Signal Transduction Protein
Mutant forms of Escherichia coli NRII (NtrB) were isolated that retained wild-type NRII kinase activity but were defective in the PII-activated phosphatase activity of NRII. Mutant strains were selected as mimicking the phenotype of a strain (strain BK) that lacks both of the related PII and GlnK signal transduction proteins and thus has no mechanism for activation of the NRII phosphatase activity. The selection and screening procedure resulted in the isolation of numerous mutants that phenotypically resembled strain BK to various extents. Mutations mapped to the glnL (ntrB) gene encoding NRII and were obtained in all three domains of NRII. Two distinct regions of the C-terminal, ATP-binding domain were identified by clusters of mutations. One cluster, including the Y302N mutation, altered a lid that sits over the ATP-binding site of NRII. The other cluster, including the S227R mutation, defined a small surface on the âbackâ or opposite side of this domain. The S227R and Y302N proteins were purified, along with the A129T (NRII2302) protein, which has reduced phosphatase activity due to a mutation in the central domain of NRII, and the L16R protein, which has a mutation in the N-terminal domain of NRII. The S227R, Y302N, and L16R proteins were specifically defective in the PII-activated phosphatase activity of NRII. Wild-type NRII, Y302N, A129T, and L16R proteins bound to PII, while the S227R protein was defective in binding PII. This suggests that the PII-binding site maps to the âbackâ of the C-terminal domain and that mutation of the ATP-lid, central domain, and N-terminal domain altered functions necessary for the phosphatase activity after PII binding
Mutations Altering the N-Terminal Receiver Domain of NRI (NtrC) That Prevent Dephosphorylation by the NRII-PII Complex in Escherichia coli
The phosphorylated form of NRI is the transcriptional activator of nitrogen-regulated genes in Escherichia coli. NRIâŒP displays a slow autophosphatase activity and is rapidly dephosphorylated by the complex of the NRII and PII signal transduction proteins. Here we describe the isolation of two mutations, causing the alterations ÎD10 and K104Q in the receiver domain of NRI, that were selected as conferring resistance to dephosphorylation by the NRII-PII complex. The mutations, which alter highly conserved residues near the D54 site of phosphorylation in the NRI receiver domain, resulted in elevated expression of nitrogen-regulated genes under nitrogen-rich conditions. The altered NRI receiver domains were phosphorylated by NRII in vitro but were defective in dephosphorylation. The ÎD10 receiver domain retained normal autophosphatase activity but was resistant to dephosphorylation by the NRII-PII complex. The K104Q receiver domain lacked both the autophosphatase activity and the ability to be dephosphorylated by the NRII-PII complex. The properties of these altered proteins are consistent with the hypothesis that the NRII-PII complex is not a true phosphatase but rather collaborates with NRIâP to bring about its dephosphorylation