167 research outputs found

    Remote control of diastereoselectivity in intramolecular reactions of chiral allylsilanes

    Get PDF
    During investigations of cyclization reactions between chiral allylsilanes and N-acyliminium ions, it was discovered that a suitably positioned benzyloxy group on the allylsilane component caused a reversal in the diastereoselectivity of these reactions relative to that normally observed with alkyl-substituted allylsilanes. This effect was subsequently observed in two other reaction types. Investigations into this effect led to the proposal of product formation through thermodynamic control facilitated by neighboring group interactions with a transient cationic species. This hypothesis was experimentally supported by the isolation of an intermediate in the proposed mechanistic pathway

    Colour remote sensing of the impact of artificial light at night (I): the potential of the International Space Station and other DSLR-based platforms

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Sensors on remote sensing satellites have provided useful tools for evaluation of the environmental impacts of nighttime artificial light pollution. However, due to their panchromatic nature, the data available from these sensors (VI-IRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this impact. Moreover, in some cases, recorded variations can be misleading. Until new satellite platforms and sensors are available, only nighttime images taken with DSLR cameras from the International Space Station (ISS), airplanes, balloons or other such platforms can provide the required information. Here we describe a theoretical approach using colour-colour diagrams to analyse images taken by astronauts on the ISS to estimate spatial and temporal variation in the spectrum of artificial lighting emissions. We then evaluate how this information can be used to determine effects on some key environmental indices: photopic vision, the Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis Index, production of NO2-NO radicals, energy efficiency and CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of Milan as a worked example of the approach.Natural Environment Research Council (NERC

    Heavy metals and radioactivity reduction from acid mine drainage lime neutralized sludge

    Get PDF
    Abstract: The worldwide known treatment processes of acid mine drainage result into the formation of hydrous ferric oxides that is amorphous, poorly crystalline and into the generation of hazardous voluminous sludge posing threat to the environment. Applicable treatment technologies to treat hazardous solid material and produce useful products are limited and in most cases nonexistence. A chemical treatment process utilizing different reagents was developed to treat hazardous acid mine drainage (AMD) sludge with the objectives to conduct radioactivity assessment of the sludge generated from lime treatment process and determine the reagent that provides the best results. Leaching with 0.5 M citric acid, 0.4 M oxalic acid, 0.5 M sodium carbonate and 0.5 M sodium bicarbonate was investigated. The leaching time applied was 24 hours at 25 oC. The characterization of the raw AMD revealed that the AMD sludge from lime treatment process is radioactive. The sludge was laden with radioactive elements namely, 238U, 214Pb, 226Ra, 232Th, 40K and 214Bi. 0.5 M citric acid provided the best results and the hazardous contaminants were significantly reduced. The constituents in the sludge after treatment revealed that there is a great potential for the sludge to be used for other applications such as building and construction

    Synthesis and receptor profiling of Stemona alkaloid analogues reveal a potent class of sigma ligands

    Get PDF
    Reported biological activities of Stemona natural products, such as antitussive activity, inspired the development of synthetic methods to access several alkaloids within this family and in so doing develop a general route to the core skeleta shared by the class of natural products. The chemistry was subsequently adapted to afford a series of analogue sets bearing simplified, diverse Stemona-inspired skeleta. Over 100 of these analogues were subjected to general G protein-coupled receptor profiling along with the known antitussive compound, neostenine; this led to the identification of hit compounds targeting several receptor types. The particularly rich hit subset for sigma receptors was expanded with two focused library sets, which resulted in the discovery of a fully synthetic, potent chemotype of sigma ligands. This collaborative effort combined the development of synthetic methods with extensive, flexible screening resources and exemplifies the role of natural products in bioactivity mining

    Translation-dependent and independent mRNA decay occur through mutually exclusive pathways that are defined by ribosome density during T Cell activation [preprint]

    Get PDF
    mRNA translation and degradation are strongly interconnected processes that participate in the fine tuning of gene expression. Particularly, targeting mRNAs to translation-dependent degradation (TDD) could attenuate protein expression by making any increase in mRNA translation self-limiting. However, the extent to which TDD is a general mechanism for limiting protein expression is currently unknown. Here we describe a comprehensive analysis of basal and signal-induced TDD in mouse primary CD4 T cells. Our data indicate that most cellular transcripts are decayed to some extent in a translation-dependent manner, both in resting and activated cells. Our analysis further identifies the length of untranslated regions, the density of ribosomes and the GC content of the coding region as major determinants of TDD magnitude. Consistent with this, all transcripts that undergo changes in ribosome density upon T cell activation display a corresponding change in their TDD level. Surprisingly, the amplitude of translation-independent mRNA decay (TID) appears as a mirror image of TDD. Moreover, TID also responds to changes in ribosome density upon T cell activation but in the opposite direction from the one observed for TDD. Our data demonstrate a strong interconnection between mRNA translation and decay in mammalian cells. Furthermore, they indicate that ribosome density is a major determinant of the pathway by which transcripts are degraded within cells

    The Ex Vivo Treatment of Donor T Cells with Cosalane, an HIV Therapeutic and Small-Molecule Antagonist of CC-Chemokine Receptor 7, Separates Acute Graft-versus-Host Disease from Graft-versus-Leukemia Responses in Murine Hematopoietic Stem Cell Transplantation Models

    Get PDF
    Despite recent advances in therapy, allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative option for a range of high-risk hematologic malignancies. However, acute graft-versus-host disease (aGVHD) continues to limit the long-term success of HSCT, and new therapies are still needed. We previously demonstrated that aGVHD depends on the ability of donor conventional T cells (Tcon s) to express the lymph node trafficking receptor, CC-Chemokine Receptor 7 (CCR7). Consequently, we examined the ability of cosalane, a recently identified CCR7 small-molecule antagonist, to attenuate aGVHD in mouse HSCT model systems. Here we show that the systemic administration of cosalane to transplant recipients after allogeneic HSCT did not prevent aGVHD. However, we were able to significantly reduce aGVHD by briefly incubating donor Tcons with cosalane ex vivo before transplantation. Cosalane did not result in Tcon toxicity and did not affect their activation or expansion. Instead, cosalane prevented donor Tcon trafficking into host secondary lymphoid tissues very early after transplantation and limited their subsequent accumulation within the liver and colon. Cosalane did not appear to impair the intrinsic ability of donor Tcon s to produce inflammatory cytokines. Furthermore, cosalane-treated Tcon s retained their graft-versus-leukemia (GVL) potential and rejected a murine P815 inoculum after transplantation. Collectively, our data indicate that a brief application of cosalane to donor Tcon s before HSCT significantly reduces aGVHD in relevant preclinical models while generally sparing beneficial GVL effects, and that cosalane might represent a viable new approach for aGVHD prophylaxis

    An RNA-binding protein, hu-antigen r, in pancreatic cancer epithelial to mesenchymal transition, metastasis, and cancer stem cells

    Get PDF
    Pancreatic cancer has poor prognosis and treatment outcomes due to its highly metastatic nature and resistance to current treatments. The RNA-binding protein (RBP) Hu-antigen R (HuR) is a central player in posttranscriptional regulation of cancer-related gene expression, and contributes to tumorigenesis, tumor growth, metastasis, and drug resistance. HuR has been suggested to regulate pancreatic cancer epithelial-to-mesenchymal transition (EMT), but the mechanism was not well understood. Here, we further elucidated the role HuR plays in pancreatic cancer cell EMT, and developed a novel inhibitor specifically interrupting HuR–RNA binding. The data showed that HuR binds to the 30-UTR of the mRNA of the transcription factor Snail, resulting in stabilization of Snail mRNA and enhanced Snail protein expression, thus promoted EMT, metastasis, and formation of stem-like cancer cells (CSC) in pancreatic cancer cells. siRNA silencing or CRISPR/Cas9 gene deletion of HuR inhibited pancreatic cancer cell EMT, migration, invasion, and inhibited CSCs. HuR knockout cells had dampened tumorigenicity in immunocompromised mice. A novel compound KH-3 interrupted HuR–RNA binding, and KH-3 inhibited pancreatic cancer cell viability, EMT, migration/invasion in vitro. KH-3 showed HuR-dependent activity and inhibited HuR-positive tumor growth and metastasis in vivo

    Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5

    Get PDF
    Citation: Obayashi, E., Luna, R. E., Nagata, T., Martin-Marcos, P., Hiraishi, H., Singh, C. R., . . . Asano, K. (2017). Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Reports, 18(11), 2651-2663. doi:10.1016/j.celrep.2017.02.052During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon

    Functional assessment of older patients in the emergency department: comparison between standard instruments, medical records and physicians' perceptions

    Get PDF
    BACKGROUND: We evaluated the accuracy of physician recognition of functional status impairment in older emergency departments (ED) patients. In particular, we evaluated the accuracy of medical records (a comparison of the information in the medical record with the functional status based on proxy interviews), and the accuracy of physician knowledge (a comparison of the information obtained from the responsible physician with the functional status based on proxy interviews). METHODS: Cross-sectional study on 101 frail older patients selected at random from among those attending ED, their ED physicians, and respondents. The study was conducted at ED in four general university teaching hospitals in a city, from July through November 2003. Functional data shown on patients' medical records were compared against functional data obtained from respondents (family members), using Kendall's Tau-b statistic. In addition patients' Katz Indices (which assesses six basic activities of daily living – basic ADL) based on interviews with ED physicians were compared against those obtained from respondents, using the coefficient of concordance weighted kappa (κ). Each patient and his respondent were paired with a single physician. RESULTS: The correlation between information on dependence for basic ADL obtained from medical records and that furnished by respondents, was 0.41 (95% CI 0.27–0.55). Concordance between the respective Katz Indices obtained from physicians and respondents was 0.47 (95% CI 0.38–0.57). CONCLUSION: Older subjects' functional status is not properly assessed by emergency department physicians

    Hur reduces radiation-induced DNA damage by enhancing expression of ARID1A

    Get PDF
    Tumor suppressor ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, regulates cell cycle progression, interacts with the tumor suppressor TP53, and prevents genomic instability. In addition, ARID1A has been shown to foster resistance to cancer therapy. By promoting non-homologous end joining (NHEJ), ARID1A enhances DNA repair. Consequently, ARID1A has been proposed as a promising therapeutic target to sensitize cancer cells to chemotherapy and radiation. Here, we report that ARID1A is regulated by human antigen R (HuR), an RNA-binding protein that is highly expressed in a wide range of cancers and enables resistance to chemotherapy and radiation. Our results indicate that HuR binds ARID1A mRNA, thereby increasing its stability in breast cancer cells. We further find that ARID1A expression suppresses the accumulation of DNA double-strand breaks (DSBs) caused by radiation and can rescue the loss of radioresistance triggered by HuR inhibition, suggesting that ARID1A plays an important role in HuR-driven resistance to radiation. Taken together, our work shows that HuR and ARID1A form an important regulatory axis in radiation resistance that can be targeted to improve radiotherapy in breast cancer patients
    corecore