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Abstract20

Sensors on remote sensing satellites have provided useful tools for evaluation

of the environmental impacts of nighttime artificial light pollution. However,

due to their panchromatic nature, the data available from these sensors (VI-

IRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this

impact. Moreover, in some cases, recorded variations can be misleading. Until

new satellite platforms and sensors are available, only nighttime images taken

with DSLR cameras from the International Space Station (ISS), airplanes, bal-

loons or other such platforms can provide the required information. Here we

describe a theoretical approach using colour-colour diagrams to analyse images

taken by astronauts on the ISS to estimate spatial and temporal variation in the

spectrum of artificial lighting emissions. We then evaluate how this information

can be used to determine effects on some key environmental indices: photopic

vision, the Melatonin Suppression Index, the Star Light Index, the Induced

Photosynthesis Index, production of NO2-NO radicals, energy efficiency and
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CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of

Milan as a worked example of the approach.

Keywords: artificial lighting, light pollution, night, remote sensing, urban21

1. Introduction22

Artificial nighttime lighting, from streetlights and other sources, has diverse23

and problematic environmental impacts. These include effects on the physi-24

ology, behaviour and phenology of organisms (Dominoni et al., 2013; Dwyer25

et al., 2013; Altermatt and Ebert, 2016; Bennie et al., 2016), the abundance26

and distribution of species (Gaston and Bennie, 2014), their ecological interac-27

tions (Davies et al., 2013), the composition of communities (Davies et al., 2017),28

and ecosystem processes and services (Hölker et al., 2015). The severity of all of29

these impacts depends critically on the spectrum of the lighting (Gaston et al.,30

2014; Schroer and Hölker, 2016), and thus to map the associated patterns of31

risk and how these are changing it is essential to have spatial and time series32

data on the spectral composition of light pollution.33

Unfortunately, obtaining information about the spectra of the emissions of34

outdoor artificial light sources on large spatial scales has been challenging. The35

main sources of remote-sensed nighttime lighting data have been colourblind36

(i.e. single broad band; Elvidge et al. 1999; Liao et al. 2013; Levin et al. 2014;37

Kyba et al. 2014), and hyperspectral and multispectral data have only been38

available for a few specific locations photographed as a part of research cam-39

paigns (Birmingham - Hale et al. 2013, Berlin - Kuechly et al. 2012; Sánchez40

de Miguel 2015, Madrid - Sánchez de Miguel 2015, Catalonia - Tardà et al.41

2011, Las Vegas - Metcalf 2012, Upper Austria - Ruhtz et al. 2015). There42

are some new cubesat missions currently exploring the possibilities of nocturnal43

remote sensing (Walczak et al., 2017; Zheng et al., 2018), in the future there44

is likely to be access to hyperspectral data from satellites like TEMPO (Carr45

et al., 2017) and potentially also from Sentinel 4 or 5b, and there have been calls46

for a dedicated nightsat satellite (Elvidge et al., 2007, 2010). But multispec-47
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tral data are already urgently required. This is particularly the case because48

rapid changes in the spectra of artificial nighttime lighting are currently taking49

place (Kyba et al., 2014, 2017). For several decades outdoor lighting has mainly50

made use of High Pressure Sodium (HPS), Low Pressure Sodium (LPS), metal51

halide (MH) and fluorescent lamps. However, there are now widespread shifts52

to ’white’ light-emitting diode (LED) lamps, that are projected soon to become53

the dominant source, and emissions from which have repeatedly been found to54

have more severe environmental impacts (Davies et al., 2014, 2017).55

An alternative, and thus likely vitally important, source of remotely sensed56

spatial and temporal data on the spectrum of artificial nighttime lighting is57

photographs taken by astronauts on the International Space Station (ISS). Noc-58

turnal images are available from 2003 to the present, although their temporal59

and spatial distributions are variable. Between 2003 and 2010, a total of 35,99560

nighttime images were taken, with a further 423,520 between 2011 and Novem-61

ber 2014. Of these, at least 30,000 images are of cities at night (Sánchez de62

Miguel et al., 2014; Sánchez de Miguel, 2015). In this paper, we first present a63

method to classify outdoor lighting types from ISS imagery, using colour-colour64

diagrams (which can also be used for similar images obtained from remote sens-65

ing aerial or ground based platforms). We then determine the relations between66

the spectral information that can be obtained from the imagery and some key67

environmental indices (photopic vision, the Melatonin Suppression Index, the68

Star Light Index, the Induced Photosynthesis Index, production ofNO2-NO69

radicals, energy efficiency and CO2 emissions, and Correlated Colour Tempera-70

ture). Finally, we provide an example of the application of this approach to ISS71

imagery of the city of Milan.72

Throughout, we concentrate on the underlying principles of the approach.73

For practical application, calibration and instrument effects also need to be74

considered, and these will be explained in a future paper. We focus here on75

establishing the principles using Nikon DSLR cameras as the exemplar, because76

these are the ones used on the ISS. A similar technique can be applied to any77

other RGB camera. With the primary exception of astronomical CCD cameras78
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and some professional cameras, current digital cameras use a Bayer matrix filter79

to create the final colour image. The characteristics of these filters can change80

from one brand to another. One of the advantages of Nikon cameras is that81

recent models have been very consistent in their spectral response. Thus, whilst82

we will concentrate on the spectral response of the Nikon D3s (the most common83

camera used on the ISS), this response is virtually identical to that of others84

that have been used, such as the D3, D4 and D5 (Fig. 1).85

2. Synthetic photometry86

The first thing we need to know in order to use an ISS image to determine87

the colour of outdoor lighting of an area is to calculate the predicted response88

of the sensor in the camera to a certain light spectrum. We employ synthetic89

photometry, a mathematical technique that allows prediction of the spectral fea-90

tures of a light source under different conditions or instrument settings (Straizys,91

1996)). This is widely used in astronomy (Fukugita et al., 1995), but can be92

applied to other photonics based research topics. In astronomy, the brightness93

of a source, measured in magnitudes, can be predicted based on its spectral94

energy distribution and that of a reference source as:95

mAB = −2.5 log10

∫ ∞
0

T (λ) φ(λ) dλ∫ ∞
0

T (λ) φref(λ) dλ

, (1)

where T (λ) is the spectral sensitivity of the observation band (including the96

detector response), φ(λ) is the spectrum of the source and φref(λ) a reference97

spectrum which defines the magnitude system. In particular, for many decades98

astronomers have employed the spectral energy distribution of the star Vega as99

a reference. This has not been free from systematic errors due to uncertainties100

in the absolute flux calibration of this star. For that reason, the tendency at101

present is to use the so-called AB magnitude system (Oke, 1974), in which the102

reference spectrum φ(λ)ref = φ(λ)AB does not depend on any particular star but103
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is defined for a source of constant spectral density flux of 3631 Janskys across104

the spectral range of the band.105

In remote sensing, where the AB magnitude system of units is not used, the106

brightness of a source is quantified as radiance, that can be measured using the107

much simpler expression:108

R =

∫ ∞
0

T (λ) φ(λ) dλ∫ ∞
0

T (λ) φAB(λ) dλ

. (2)

Conversion from mAB, AB magnitudes, to radiance R can be done using109

(Sánchez de Miguel et al., 2017):110

mAB = −2.5 log10(R) − 5 log10λ̄− 2.41, (3)

where R is expressed in erg s−1 cm−2 Å−1, and λ̄ is the average wavelength of111

the band defined by112

λ̄ =

∫ ∞
0

λT (λ) dλ∫ ∞
0

T (λ) dλ

. (4)

Synthetic photometry measurements can be obtained for any combination113

of spectral source and wavelength range using equations 1 and 3. In astronomy114

one can employ the spectrum of many stars for calibration purposes. This is115

much cheaper, precise and accessible than using absolute calibrated radiometric116

lamps. In this paper we use radiance ratios of the form:117

R

R′
=

∫ ∞
0

T (λ) φ(λ) dλ∫ ∞
0

T ′(λ) φ(λ) dλ

∫ ∞
0

T ′(λ) φ(λ)AB dλ∫ ∞
0

T (λ) φ(λ)AB dλ

≡ CT,T ′

∫ ∞
0

T (λ) φ(λ) dλ∫ ∞
0

T ′(λ) φ(λ) dλ

,

(5)

where R is the radiance in one filter/instrument system, R′ is the radiance of118

the same source using a different filter/instrument system, T and T ′ are the119

spectral transmittance of the respective filter/instrument systems, and CT,T ′120

can be considered as a constant after setting the two filter/instrument systems121
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in use. These radiance ratios are called colours in astrophysics and we will use122

the terms colour and ratio interchangeably.123

2.1. Spectral libraries used124

In order to predict the colours that will appear on the sensors or the synthetic125

bands that will be discussed later, it is necessary to have high resolution spectra126

of the light sources. For this work we have used two different spectral libraries,127

the LSPDD database and the LICA UCM database. The LSPDD database128

mainly comprises spectra measured in the laboratory. It includes 254 lamp129

spectra (with information also about energy efficiency), in ASCII text format130

(273 nm to 900 nm every 0.5 nm; Sánchez de Miguel et al. 2017). By contrast,131

the LICA UCM database comprises spectra obtained mainly from measurements132

made in the field (Tapia et al., 2017). Here we use 50 spectra from this database,133

mainly for the more common forms of lamps used for street lighting. The two134

databases complement each other for our purposes since in a laboratory it is135

difficult to get a real representation of how street light lamps actually perform136

outside (depending on factors such as changes in spectra due to aging of lamps,137

frequency of maintenance and cleaning etc.), whilst in the field it is difficult to138

obtain information on energy efficiency. In this paper we use the classification of139

illumination technology (kinds of lamps) employed by the LSPDD database. We140

focus on lamps typical of the street lights of the European Union and Canada,141

although the industry is constantly creating new kinds of street lights.142

3. Lamp classification using RGB DSLR colours143

The colourcolour (or two colour) technique has long been used widely in as-144

trophysics to discriminate different light sources based on their predicted phys-145

ical properties (Öhman, 1949; Dixon, 1965). However, it has not previously146

been used in the context of nocturnal remote sensing. The technique compares147

two ratios each of two different bands in a bidimensional space. Each ratio is148

named as a colour. These colours can be calculated analytically or observed.149
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The large potential of this technique comes from the ease of comparing analyti-150

cal or theoretical predictions with observations. In our case, we have computed151

analytically the expected colours (radiance ratios) detected by the camera sen-152

sor of a Nikon D3s for the different lamps in the LSPDD and LICA databases153

using the synthetic photometry technique (see above). DSLR cameras use a154

Bayer filter in front of the sensor, which comprises microfilters of three different155

colours, Blue (B), Green (G) and Red (R). With this structure it is possible to156

obtain for a given field of view four images of three colours simultaneously, one157

red, one blue and two green images that are identical but from slightly different158

perspectives. These images do not correspond precisely to the same viewpoint,159

therefore an interpolation procedure is usually used to obtain a higher resolu-160

tion image. For the colourcolour technique we use ratios between the colours161

to obtain a distribution of values on the plane B/G vs G/R. In daylight remote162

sensing similar techniques have been used for the calculation of the Normalised163

Difference Vegetation Index (NDVI) since the late 1970s (Rouse Jr et al., 1974;164

Tucker, 1979; Tucker et al., 2005), although NDVI is a spatial transformation165

of two bands of a spectral ratio (NIR/VIS ), and we propose the use of three166

bands. For present purposes we assume direct line-of-sight to the light source.167

In practice, atmospheric corrections may need to be considered when the obser-168

vation is made from space, or reflectance corrections if the light does not take169

a direct path to the sensor. We also treat the detector as ideal, so it is not170

affected by differences in the sensitivity of the camera to different wavelengths171

or linearity issues. In practice, the RAW image data would also need to be172

corrected for these effects.173

It is important to note that the RAW image is the least processed that174

a DSLR camera can produce, but whilst in theory this should be completely175

unprocessed this is usually not the case. Such images do not have corrections176

for color balance, linearity corrections, gamma corrections etc. The JPG format177

is more common and widespread but this is not the native format and can have178

several issues. Most JPG images use lossy compression, so a large part of179

the information is lost. They do not use the full dynamic range of the data180
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and a gamma correction (Poynton, 1998) is used to make them more human181

vision friendly, destroying the linearity of the original data. The JPG format182

is not recommended for quantitative analysis unless all these issues have been183

addressed first.184

Different lamp types do not completely separate out in B/G vs G/R space185

using the spectral information from the databases (Fig. 2). This said, the likeli-186

hood of particular types giving rise to emissions in different regions of this space187

can be markedly narrowed down. The area framed by B/G [0-0.05] and G/R188

[0-0.36] can be assigned to Low Pressure Sodium (LPS) and pure amber LEDs;189

the area B/G [0.05-0.25] and G/R [0-0.36] to High Pressure Sodium (HPS) light190

sources; the area B/G [0-0.25] and G/R [0.36-0.55] has a combination of HPS,191

LED phosphor converted (PC) amber, some warm light fluorescents, incandes-192

cent lamps and other warm LEDs; the area B/G [0.25-045] and G/R [0-0.55]193

is where neutral white lamps like LED 3000k and many fluorescents lie; the194

area B/G [0-0.36] and G/R > 0.55 is where we find lamps with high mercury195

content, and some LEDs many of which have a greenish colour as a result of196

degradation from their original specification; the area B/G > 0.36 and G/R >197

0.55 has the more bluish lamps like LEDs of 4000k and 5000k, and metal halide198

lamps. There are also some ”forbidden” areas, like the region G/R [0-0.55] and199

B/G > 0.45, which can only be populated by mixtures of extremely warm lights200

with extremely cold lights or if there are problems with signal to noise ratios in201

image data.202

4. Evaluation of relationships between environmental measures and203

RGB colours204

Whilst the distribution of lamp types across B/G vs G/R space may not be205

simple, it may still be the case that one or other of these ratios may show useful206

relationships with measures of the environmental impact of artificial nighttime207

lighting. If this were to be the case, then it would be possible to re-express RGB208

images taken from the ISS in terms of these measures. Here we evaluate this209
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potential for a varied selection of such measures, namely photopic vision, the210

Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis211

Index, production of NO2-NO radicals, energy efficiency and CO2 emissions,212

and Correlated Colour Temperature.213

In each case, we determine the relationships between the measure and the214

G/R and B/G ratios. The fits reported are statistical approximations. Linear215

fits were calculated with Robust linear model estimation RANSAC (Pedregosa216

et al., 2011), in order to reduce the effect of outliers without removing them.217

Polynomial fits were calculated using the polyfit function of Walt et al. (2011).218

The errors of the fits have been calculated using the bootstrap technique with219

1000 iterations and considering one sigma error, so the central value is the220

median, and data points falling outside the error bars ±1σ. The selection of221

the order of the polynomials reported has been decided manually due to the222

statistical peculiarities of the sample. In particular, whilst some lamp types223

have an industrial standard single spectrum (and therefore effectively no error224

in the measurement; e.g. LPS) others have multiple spectra and have been225

’field sampled’ (with associated error; e.g. LEDs). The reported polynomial fits226

are those that are judged to give the highest explained variance whilst also not227

unduly punishing fit to the LPS data because of its representation by only one228

point.229

4.1. Photopic vision230

Photopic vision (aka V (λ) or luminance) is that which humans use when231

illumination levels are higher than ∼ 0.7cd/m2 (Eloholma and Halonen, 2006).232

There is a strong relationship between the ratio G/R and the V (λ)/G ratio233

derived from the sensitivity curve for this vision (Smith and Guild, 1931) (Table234

1, Fig. 3). The relationship is not linear, such that errors in the determination235

of lower values of the G/R ratio will lead to larger errors in the V (λ)/G ratio.236

This relationship can nonetheless be very useful to convert images taken by237

DSLRs to units of Lux or Candelas that are used in most regulations concerning238

artificial lighting. Assuming that radiation is monochromatic, radiometric units239
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of Watts per steradian can be converted to Candelas by dividing by 683 (Zong,240

2016). However, we do not recommend use of this conversion in remote sensing241

applications if the spatial resolution of the image is less than 1m/pixel. If the242

resolution of the image is higher than 1m/pixel, this can be used for a reliable243

measure of illumination, that can have legal implications. This is because these244

units are usually used to measure illumination for regulatory purposes. Values245

measured at low spatial resolution will be misleading because they will include246

illuminance from a mixture of surfaces, including the roofs of buildings. In247

order for the end result to represent photopic intensity we need to multiply the248

intensity of the green channel V(λ)/G ratio (eq. 6) (this paper):249

V(λ) = V (λ)/G (B/G or G/R) ·G (6)

This equation gives us the possibility of measuring luminance using DSLR250

cameras, by getting an estimate of the V (λ)/G ratio from B/G or G/R ratio251

images and the intensity on the G channel.252

4.2. Melatonin Suppression Index and Melatonin Suppression band253

Melatonin is one of the key drivers of biological rhythms in a wide array of254

organisms, and its production is highly responsive to light spectra. The Mela-255

tonin Suppression Index was defined by Aubé et al. (2013) using the melanopsin256

response function (aka msas) published by Thapan et al. (2001) and Brainard257

et al. (2001). The MSI values are weighted by photopic intensity and constitute258

a measure of the potential suppression of melatonin production by a light source259

compared to the solar spectrum:260

MSI =

∫ 730nm

380nm
φn(lamp)(r, λ)M(λ)dλ∫ 730nm

380nm
φn(D65))(r, λ)M(λ)dλ

(7)

There is a linear relationship between MSI and the G/R ratio (Table 1, Fig.261

4). The dispersion of values is greater for bluer lamp sources. However, for262

most lamps this relationship is sufficient for an estimate of MSI of better than263

+0.2
−0.05,data points falling outside the error bars, that allow us to estimate the264
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MSI of the sources with a typical precision of 75%. There is a tighter linear265

relationship between MSI and the B/G ratio (Table 1, Fig. 4), although it is266

much more difficult to get a good signal to noise ratio on the blue channel of267

DSLRs than on the green and red. Using both relationships, we can obtain a268

more reliable estimate of the real MSI value. MSI is weighted by the human269

vision response, so that we can measure with the V (λ)/G relationship we can270

calculate the real impact by the next equation (this paper):271

MSI Impact = MSI(B/G or G/R) ·
[V (λ)

G
(B/G or G/R)

]
·G (8)

Sometimes we might want to skip the step of the estimation of luminance272

(aka V(λ)) and go directly to estimate the energy emitted across the melatonin273

suppression band (msas). Indeed, this variable shows less scattered relationships274

with G/R and B/G ratios, but it is not weighted by the human vision response275

(Fig. 5).276

msas intensity = msas/G (B/G or G/R) ·G (9)

If we want to know the total intensity emitted in the melatonin suppression277

band we need to apply equation 9 (this paper). Doing so allows the intensive278

function of msas/G and extensive values of a G image to be combined. As279

msas/G ratio is a function of B/G or G/R spectral values it is possible to create280

images that represent msas/G by using B/G or G/R images.281

The potential application of this or derived indicators can be appreciated282

from recent publication of the finding of a statistically significant correlation283

between MSI and the risks of breast and prostate cancer (Garcia-Saenz et al.,284

2018).285

4.3. Star Light Index and Scotopic vision286

The loss of visibility of stars as a consequence of artificial nighttime lighting287

is a particular concern to astronomers, but may have wider impacts in terms288

of limiting human experiences of the natural world (Kyba, 2018) and nocturnal289
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orientation by other species (Bird and Parker, 2014; Wallraff, 1960; Warrant and290

Dacke, 2011). The Star Light Index (SLI) was defined by Aubé et al. (2013)291

using human scotopic vision (CIE 1951; Wyszecki and Stiles (1982)) aka V ′(λ),292

as a measure of the visibility of stars to people:293

SLI =

∫ 730nm

380nm
φn(lamp)(r, λ)S(λ)dλ∫ 730nm

380nm
φn(D65))(r, λ)S(λ)dλ

(10)

There is a polynomial relationship between SLI and the G/R ratio (Table294

1, Fig. 6). Similar to MSI, the blueish light sources are more dispersed than295

the warm light sources. In addition, the plot shows a good fit concerning the296

predicted SLI values derived from the spectra using the B/G ratio (Table 1).297

This SLI(B/G)relationship is less scattered than the SLI(G/R) ratio, although298

the level of accuracy will depend on the signal to noise ratio. Usually, the299

blue channel has a lower signal to noise ratio. Therefore, the G/R relationship300

will often be more accurate. Similar to how we obtained the actual photopic301

intensity, in order for us to obtain the scotopic intensity we also calculated the302

V ′(λ)/G using the B/G and G/R ratios and the G channel. In other words,303

the equation used for obtaining the photopic intensity can also be applied to304

obtain the scotopic intensity simply by replacing the V (λ)/G function with the305

V ′(λ)/G function. In addition, by joining these two functions we are also able to306

estimate the scotopic-photopic (SP) ratio. The SP ratio is useful for determining307

the impact on star visibility. It should be noted that, contrary to the belief of308

some researchers, the SP ratio is not useful for establishing suitable illumination309

intensity levels since scotopic vision starts at 0.5 lux. This means that scotopic310

vision is used only when illumination intensity levels are extremely low. Much311

lower than the average lit street.312

4.4. Induced Photosynthesis Index and Photosynthetic band313

The Induced Photosynthesis Index (IPI) has been defined by Aubé et al.314

(2013) using Germany: Deutsches Institut Fur Normung EV (German National315

Standard) (2000), and represents the potential of a source of illumination to316

enable plant photosynthesis.317
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IPI =

∫ 730nm

380nm
φn(lamp)(r, λ)I(λ)dλ∫ 730nm

380nm
φn(lamp))(r, λ)I(λ)dλ

(11)

There is no relationship between the IPI and the G/R ratio (see in sup-318

plementary materials) or the B/G ratio (Table 2). We conclude that as the319

spectral sensitivity of photosynthesis is so broad, any lamp spectrum, no mat-320

ter the dominant wavelengths, can produce a photosynthetic response. The321

highest response is to lamps that have emissions similar to a black body (this is322

logical as plants are adapted to respond to sunlight that is effectively emission323

from a black body). There is not a significant correlation between the IPI and324

the ratio G/R, and more careful analysis is needed to exclude the black bodies325

(Fig. 8).326

4.5. Production of NO2-NO radicals327

Stark et al. (2011) observed that emissions from city lights can interact328

with the chemistry of the atmospheric production of NO2 and NO radicals and329

thus change levels of air pollution, with different types of lamps influencing this330

interaction differently.331

j(NO3)

Luminance
=

∫
φn(lamp)(r, λ)σNO3(λ) · [φNO3→NO2(λ) + φNO3→NO(λ)]dλ∫

φn(lamp)(r, λ)V (λ)dλ
(12)

Because of the complicated absorption spectrum of NO3 (aka jNO3), the332

main precursor of NO2 and NO, it does not show a good relationship with the333

G/R ratio (Fig. 9, Table 2) nor with the B/G ratio (Table 2). However, LPS334

lamps are associated with much higher levels of yields of NO3 than are other335

lamps. Equation 12 is the formula used to create fig. 9, more details in Stark336

et al. (2011).337

4.6. Energy efficiency - CO2 production338

There is much interest in estimating the energy efficiency of lighting - which339

has obvious implications for its wider environmental impacts - and how this is340
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changing, at landscape scales and above (e.g. nationally). However, there is341

no relationship between luminous efficacy measures of lamps from the LSPDD342

database or from Wikipedia contributors (2018) and either the G/R ratio or343

the B/G ratio when considering all the lighting technologies (Table 2). Some344

authors have argued that there is a correlation at higher levels of Correlated345

Colour Temperature (for definition see below) (Donatello et al., 2017). However,346

we found no marked relationship amongst just the white light technologies. In347

short, there is no way to determine energy efficiency using only the colour of348

lights without knowledge of the technology that is producing this specific colour,349

and even in that case for some technologies, such as LEDs, a wide range of energy350

efficiencies is possible.351

4.7. Correlated Colour Temperature352

Correlated Colour Temperature (CCT) is a measure of the human sensation353

of colour compared with black bodies of a certain temperature (McCamy, 1992).354

This parameter is widely used by the lighting industry and in photography to355

give an approximate sense of the colour of light, although it poorly captures the356

blue content of light sources, which is a significant issue with regard to many357

”white” LEDs (Galad́ı-Enŕıquez, 2018). CCT and the G/R ratio are related in358

an approximately linear fashion (Fig. 10), but the best fit is a polynomial one.359

The scatter is much greater for bluer lamps. CCT has been criticized because360

it does not represent the environmental impact of the light, even though it has361

been used in several regulations that are intended to do so (Kinzey et al., 2017).362

5. Milan an example application363

Probably the best known recent conversion of a streetlight system has been in364

2015 in the city of Milan during which high pressure sodium lamps were replaced365

with LEDs. In this section we use nighttime images from the ISS taken before366

and after this conversion as an example of the application of the methodology367

described in this paper. The images used are ISS032-e-012145(2012) and ISS043-368
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e-093509(2015) taken from Sánchez de Miguel et al. (2015) and downloaded from369

NASA’s Gateway to Astronaut Photography of Earth (https://eol.jsc.nasa.gov/).370

To apply the statistical relationships between the RGB values and the en-371

vironmental variables it is necessary to make several corrections to the raw372

image data of the city since this does not represent the real intensity of the373

RGB channels. Neither does the raw data show the real ratios between the374

different channels. In order to resolve these discrepancies we applied standard375

procedures of decodification of the raw data, linearity correction of the sensor376

and vignetting correction of the lens(Sánchez de Miguel, 2015). Furthermore,377

corrections of the relative intensity between channels have been applied. For378

accuracy, calibrations used the same lens and camera models used by the astro-379

nauts to take the images. Because, we are using the images for a comparative380

analysis only, we did not need to apply atmospheric corrections or ISS window381

transmission corrections.382

We focus on two of the environmental measures, photopic intensity and MSI.383

There was no measurable change in photopic intensity, estimated using equation384

6, across Milan between the two time periods (Fig. 11; measured variation was385

0% 5%). This makes sense because the streetlight conversion was designed to386

produce the same luminance level as did the original streetlights. By contrast,387

there was an increase in values of MSI, estimated using equation 7, of 37% in388

Milan (Fig. 11). Weighting MSI by photopic vision, using equation 8, shows an389

increase of 23% (Fig. 13).390

6. Discussion391

Images of the Earth taken using DSLR cameras from the ISS, and poten-392

tially other platforms, can provide valuable data on the colour of nighttime393

artificial lighting. As reported here, we have determined an approach to ex-394

tracting these data through the use of colour-colour diagrams. In turn, this395

enables the association to be determined with a variety of measures of environ-396

mental impacts (Table 1 and 2). In some cases these relationships are strong397
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(e.g. Photopic vision, Melatonin Suppression Index), providing a basis for cre-398

ating spatial maps of potential risks of artificial lighting and also how those399

risks are changing through time. In other cases these relationships are poor or400

non-existent (e.g. Induced Photosynthesis Index, energy efficiency), meaning401

that such maps cannot be created.402

This method is analytical, and uses calculations of the light spectra to deter-403

mine the lamp colours. The important advantage of this approach is that it is404

device independent. And therefore, the cameras should be calibrated to fit the405

predicted colours. This means that success or failure ”only” depends on the sig-406

nal to noise ratio as well as the accurate characterisation of the DSLR cameras,407

the completeness of the spectral databases and other environmental corrections.408

The only limitation of this method is that, although the data concerning pre-409

dicted colours is fully reliable, some field study is needed in order to set initial410

accurate boundaries for the clusters of predicted colours. This additional data411

will allow for precise fine tuning devices used in studies. We propose that the412

radiance calibrated G/R and B/G ratios be termed the Normalized Ratio Light413

Index (NRLI) Warm and Cold respectively, that is NRLIw and NRLIc, to dis-414

tinguish them from non-radiance calibrated G/R and B/G ratios used by other415

authors (Hale et al., 2013).416

While our focus is on the potential for using the method documented here to417

measure the environmental impacts of artificial nighttime lighting using images418

taken from the ISS, the approach is applicable to DSLR camera images from419

other platforms. Terrestrial-based and airborne images of cities at night could420

be useful tools to assess the environmental impacts of artificial light, particularly421

in assessing historical changes where new measurements are not possible. Field422

ecological studies on the impacts of artificial light on ecosystems often lack a423

spectral characterisation of light sources due to the cost of spectrophotometers,424

despite the importance of emission spectra for the ecological responses (Bennie425

et al., 2016; Davies et al., 2017); the routine use of DSLR images could help to426

fill this gap.427

A recent conservative approach, that is limited because of the spectral range428
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of the VIIRS satellite sensor (Hillger et al., 2013; Miller et al., 2012), has es-429

timated that both the extent and intensity of artificial nighttime lighting are430

growing globally at a rate of about 2 percent per annum (Kyba et al., 2017).431

Perhaps more significantly, the rate of increase is similar across regions that,432

over the time period analysed (2012-2016), began with very different levels of433

artificial lighting. Thus the environmental pressures that result from the in-434

troduction of lighting (see section 1) are both being introduced into areas in435

which previously they have not been experienced, and are being exacerbated436

in regions in which they may already have been quite acute. Given that these437

pressures are sensitive to the spectrum of lighting, having tools to track the438

spatial pattern and change in this spectrum will be vital.439
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Sánchez de Miguel, A., Garćıa, L., Lindberg Christensen, L., 2015. First use565

of iss astronaut pictures for light pollution studies. URL: https://www.iau.566

org/news/pressreleases/detail/iau1510/.567

21

https://www.iau.org/news/pressreleases/detail/iau1510/
https://www.iau.org/news/pressreleases/detail/iau1510/
https://www.iau.org/news/pressreleases/detail/iau1510/


Miller, S.D., Combs, C.L., Kidder, S.Q., Lee, T.F., 2012. Assessing moon-568

light availability for nighttime environmental applications by low-light visible569

polar-orbiting satellite sensors. Journal of Atmospheric and Oceanic Technol-570

ogy 29, 538–557.571
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Relationship Factors (pn · xn + ...+ p0 · x0) Valid area(x) R2 p value

Photopic

V (λ)/G = f(G/R) −4.0 + 9.8 − 8.2 + 3.60 [0.1,1.1] 0.97 < 0.001

−δ −0.5 − 0.6 − 0.5 − 0.06

+δ +0.4 + 0.9 + 0.3 + 0.09

V (λ)/G = f(B/G) −2.4 + 4.9 − 3.6 + 2.15 [0.0,1.0] 0.72 < 0.001

−δ −1.2 − 1.8 − 0.8 − 0.13

+δ +1.1 + 1.8 + 0.8 + 0.12

Melatonin Suppreion Index

MSI = f(B/G) +1.09 − 0.053 [0.15,1.0] 0.87 < 0.001

−δ −0.05 − 0.019

+δ +0.05 + 0.019

MSI = f(G/R) 0.97 − 0.19 [0.0,1.0] 0.68 < 0.001

−δ −0.12 − 0.06

+δ +0.12 + 0.06

msas/G = f(B/G) +0.75 + 0.03 [0.0,0.8] 0.88 < 0.001

−δ −0.02 − 0.01

+δ +0.03 + 0.01

msas/G = f(G/R) +0.57 − 0.02 [0.18,1.0] 0.54 < 0.001

−δ −0.06 − 0.04

+δ +0.08 + 0.03

Stellar Light Index

SLI = f(G/R) +0.84 + 0.07 [0.18,1.0] 0.64 < 0.001

−δ −0.18 − 0.09

+δ +0.18 + 0.09

SLI = f(B/G) +0.59 + 0.14 [0.0,0.8] 0.84 < 0.001

−δ −0.04 − 0.08

+δ +0.03 + 0.12

Table 1: Relationships between different environmental indices and the G/R or B/G ratios

obtained from imagery from a DSLR. In all cases the number of spectra used is 206. f(x)

indicates the function where x is equal to B/G or G/R. Factors represent the pn values of the

polynomial fit. Uncertainties in the coefficients are given as ±δ. Valid area represent the X

range where the fit is accurate. 25



Relationship Factors (pn · xn + ...+ p0 · x0) Valid area(x) R2 p value

Scotopic vision

V ′(λ)/G = f(G/R) −27 + 81 − 91 + 47 − 9 + 0.9 [0.18,0.9] 0.66 < 0.001

−δ −18 − 65 − 80 − 37 − 15 − 0.8

+δ +22 + 63 + 72 + 50 + 9 + 1.8

V ′(λ)/G = f(B/G) −15 + 33 − 25 + 6 + 0.7 + 0.23 [0.0,1.0] 0.90 < 0.001

−δ −15 − 26 − 25 − 7 − 1.1 − 0.05

+δ +12 + 32 + 21 + 8 + 1.1 + 0.05

Induced Photosynthesis Index

IPI= f (B/G) no fit NO NO NO

IPI= f (G/R) no fit NO NO NO

Correlated Color Temperature

CCT = 104 · f ˙(G/R)) −3.0 + 5.8 − 3.2 + 1.0 + 0.06 [0.2, 1.] 0.91 < 0.001

−δ −1.5 − 4.3 − 3.5 − 1.2 − 0.14

+δ +1.5 + 3.8 + 3.5 + 1.1 + 0.14

CCT = 104 · f ˙(B/G) −3.6 + 6.0 − 1.6 + 0.4 + 0.18 [0,1] 0.82 < 0.001

−δ −4.0 − 4.6 − 3.3 − 0.5 − 0.03

+δ +2.6 + 6.2 + 2.6 + 0.6 + 0.03

Yields NO3

jNO3/V(λ)= f (B/G) no fit NO 0.38 NO

jNO3/V(λ)= f (G/R) no fit NO 0.008 NO

Luminosity efficiency

Lum. eff.=f(G/R) no fit NO NO NO

Lum. eff.=f(B/G) no fit NO NO NO

Table 2: Relationships between different environmental indices and the G/R or B/G ratios

obtained from imagery from a DSLR. In all cases the number of spectra used is 206. f(X)

indicates the function where x is equal to B/G or G/R. Factors represent the pn values of the

polynomial fit. Uncertainties in the coefficients are given as ±δ. Valid area represent the X

range where the fit is accurate.
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Figure 1: Spectral responses of recent models of DSLR cameras (Nikon D2X, D3, D3s, D4,

D5, Sony A7SII(Sa7SII), Canon5D Mark II(C-5D) and the special astrophotography camera

Nikon D810A). All of these cameras, except the D810A and the C-5D, are being (or have been)

used on the ISS; the others have been included for comparison. These data were obtained by

C. Tapia and A. Sánchez de Miguel at the LICA-UCM laboratory.To facilitate the comparison

among responses they have been normalized to a maximum value of 1.
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Figure 2: The distribution of emissions from different kinds of lamps with respect to B/G

and G/R ratios. The coloured areas are described in the main text. The colour of the

points mimics the colour tone of the lights, so the bluer lamps are coded in dark blue, the

reddish in red, etc., with exception of cyan, which represents white lights. The technologies

are indicated as HAL - Halogen, MH - Metal Halide, CMH - Ceramic Metal Halide, CFL -

Compact Fluorescent, FL - Fluorescent, HPS - High Pressure Sodium, LPS - Low Pressure

Sodium, and INC - Incandescent. The symbol used for CFL and FL is the same because they

share the same spectral features.
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Figure 3: Relationship between photopic vision and (left) the G/R ratio and (right) the B/G

ratio.Colours are the same as on fig 2.

Figure 4: Relationship between the Melatonin Suppression Index (MSI) and (left) the G/R

ratio and (right) the B/G ratio. Colours are the same as on fig 2.
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Figure 5: Relationship between the Melatonin suppresion band and Green band ratio and

(left) the B/G ratio and (right) the G/R ratio. Colours are the same as on fig 2.

Figure 6: Relationship between the Stellar light Index and (left) the G/R ratio and (right)

the B/G ratio, with linear (blue) and polynomial fits (red). Colours are the same as on fig 2.
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Figure 7: Relationship between Scotopic vision and G band ratio and (left) the G/R ratio

and (right) the B/G ratio. Colours are the same as on fig 2.

Figure 8: Relationship between the Induced Photosynthesis band and G ratio and (left) the

G/R ratio and (right) the B/G ratio. Colours are the same as on fig 2.
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Figure 9: Relationship between NO2+NO radical production and (left) the B/G ratio and

(right) the G/R ratio. Colours are the same as on fig 2.

Figure 10: Relationship between Correlated Colour Temperature (CCT) and (left) the G/R

ratio and (right) the B/G ratio, with linear (blue) and polynomial fits (red). Colours are the

same as on fig 2.
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Figure 11: Images taken from the ISS corrected to represent photopic intensity (units propor-

tional to lux). Milan in 2012 (left) and in 2015 (right). The green rectangles are the reference

regions for the differential photometry, and the polygon represent the municipality of Milan.
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Figure 12: Images taken from the ISS corrected to represent MSI. Milan in 2012 (left) and in

2015 (right). Rectangles and polygon as in Figure 11.
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Figure 13: Images taken from the ISS corrected to represent the impact on MSI. It shows

weighted MSI by photopic vision, using equation 8. Milan in 2012 (left) and in 2015 (right).

Rectangles and polygon as in Figure 11.
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