304 research outputs found

    Cheese whey management by catalytic steam reforming and aqueous phase reforming

    Get PDF
    Cheese whey is a yellowish liquid by-product of the cheese making process. Owing to its high BOD and COD values, this feedstock should not be directly discharged into the environment without appropriate treatment. The management of this wastewater has become an important issue, and new treatments must be sought. This work addresses the valorisation of cheese whey by steam reforming and aqueous phase reforming. The catalytic steam reforming of cheese whey turned out to be a promising valorisation route for H2 production from this effluent. This process enabled the organic compounds present in the cheese whey to be transformed into a rich H2 gas (35% of the C of the feed was transformed into a gas with 70 vol.% of H2). This significantly reduced the amount of carbon present in the original feedstock, producing an almost carbon-free liquid stream. The aqueous phase reforming of cheese whey allowed 35% of the carbon present in the whey to be transformed into gases and 45% into valuable liquids. The gas was principally made up of H2 and CO2, while a mixture of added-value liquids such as aldehydes, carboxylic acids, alcohols and ketones constituted the liquid phase. However, both valorisation routes produced a substantial amount of solid. The formation of this solid was promoted by the presence of salts in the original feedstock and caused operational problems for both valorisation processes. In addition, it hampered gas production in the case of steam reforming and reduced gas and liquid formation when using aqueous phase reforming as the valorisation route. The filtration of cheese whey slightly decreased the solid formation in both processes due to the reduction of proteins and fats, both of which partly contribute to such formation. Less solid was formed in the experiments conducted with lactose than in those conducted with whole and with filtered cheese whey

    Pyrolysis kinetics of hydrochars produced from brewer’s spent grains

    Get PDF
    The current market situation shows that large quantities of the brewer's spent grains (BSG)-the leftovers from the beer productions-are not fully utilized as cattle feed. The untapped BSG is a promising feedstock for cheap and environmentally friendly production of carbonaceous materials in thermochemical processes like hydrothermal carbonization (HTC) or pyrolysis. The use of a singular process results in the production of inappropriate material (HTC) or insufficient economic feasibility (pyrolysis), which hinders their application on a larger scale. The coupling of both processes can create synergies and allow the mentioned obstacles to be overcome. To investigate the possibility of coupling both processes, we analyzed the thermal degradation of raw BSG and BSG-derived hydrochars and assessed the solid material yield from the singular as well as the coupled processes. This publication reports the non-isothermal kinetic parameters of pyrolytic degradation of BSG and derived hydrochars produced in three different conditions (temperature-retention time). It also contains a summary of their pyrolytic char yield at four different temperatures. The obtained KAS (Kissinger-Akahira-Sunose) average activation energy was 285, 147, 170, and 188 kJ mol(-1) for BSG, HTC-180-4, HTC-220-2, and HTC-220-4, respectively. The pyrochar yield for all hydrochar cases was significantly higher than for BSG, and it increased with the severity of the HTC's conditions. The results reveal synergies resulting from coupling both processes, both in the yield and the reduction of the thermal load of the conversion process. According to these promising results, the coupling of both conversion processes can be beneficial. Nevertheless, drying and overall energy efficiency, as well as larger scale assessment, still need to be conducted to fully confirm the concept

    Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound

    Get PDF
    Cheese whey is a yellowish liquid by-product of the cheese making process. Owing to its high BOD and COD values, this feedstock should not be directly discharged into the environment without appropriate treatment. Before dealing with real cheese whey, this work addresses the production of a rich hydrogen gas from lactose (the largest organic constituent of this waste) by catalytic steam reforming. This reforming process has been theoretically and experimentally studied. The theoretical study examines the effect of the temperature (300-600 °C), lactose concentration (1-10 wt.%) and N2 (0-80 cm3 STP/min) and liquid flow (0.1-0.5 mL/min) rates on the thermodynamic composition of the gas. The results show that the temperature and lactose concentration exerted the greatest influence on the thermodynamics. The experimental study, conducted in a fixed bed reactor using a Ni-based catalyst, considers the effect of the temperature (300-600 °C), lactose concentration (1-10 wt.%) and spatial time (4-16 g catalyst min/g lactose) on the global lactose conversion, product distribution on a carbon basis (gas, liquid and solid) and the compositions of the gas and liquid phases. Complete lactose conversion was achieved under all the experimental conditions. The carbon converted into gas, liquid and solid was 2-97%, 0-66% and 0-94%, respectively. The gas phase was made up of a mixture of H2 (0-70 vol.%), CO2 (20-70 vol.%), CO (2-34 vol.%) and CH4 (0-3 vol.%). The liquid phase consisted of a mixture of aldehydes, ketones, carboxylic acids, sugars, furans, alcohols and phenols. Optimal conditions for cheese whey valorisation were sought considering the energetic aspects of the process. Using a lactose concentration similar to that of cheese whey (5.5 wt.%), maxima for the CC gas (88%) and the proportion of H2 (67 vol.%) in the gas together with a carbon-free liquid stream can be achieved at 586 °C using a spatial time of 16 g catalyst min/g lactose. Theoretically, the combustion of 20% of this gas provides the energy necessary for the process enabling the transformation of 68% of the carbon present in the initial effluent into a H2 rich gas (67 vol.%) with a global H2 yield of 16 mol H2/mol lactose. In a real case it would be necessary to increase the amount of gas combusted to compensate for heat losses

    An insight into the separation of 1, 2-propanediol, ethylene glycol, acetol and glycerol from an aqueous solution by adsorption on activated carbon

    Get PDF
    Glycerol conversion processes such as aqueous phase reforming and hydrogenolysis generate value-added compounds highly diluted in water. Because distillation is a high energy demand separation step, adsorption could be an attractive alternative to recover these chemicals. Adsorption isotherms of 1, 2-propanediol, acetol, ethylene glycol and glycerol onto activated carbon were determined by batch adsorption experiments. These isotherms were fitted slightly better to the Freundlich equation than to the Langmuir equation. Acetol is the compound with the highest adsorption at concentrations smaller than 1 M. Properties of the adsorbate such as the -OH group number, chain length, molecular size and dipole moment, besides characteristics of the adsorbent such as the surface area, oxygen and ash content, are considered to explain the observed results. Moreover, adsorption experiments were performed with mixtures of compounds and it was determined that the molar amount adsorbed is less than predicted from the adsorption isotherms of the individual compounds treated separately. In addition, the influence of the activated carbon thermal pretreatment temperature on the adsorption capacity has been studied, the optimum being 800¿C. An analysis of the influence of the activated carbon characteristics showed that the most important parameters are the total pore volume and the ash content. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Effect of biodiesel-derived impurities (acetic acid, methanol and potassium hydroxide) on the aqueous phase reforming of glycerol

    Get PDF
    This work analyses the influence of three biodiesel-derived impurities (CH3OH, CH3COOH and KOH) on the aqueous phase reforming of glycerol at 220 °C and 44 bar using a Ni-La/Al2O3 catalyst. The experiments were planed according to a factorial 2k design and analysed by means of an analysis of variance (ANOVA) test to identify the effect of each impurity and all possible binary and ternary combinations. The presence of CH3OH decreased the glycerol conversion, while CH3COOH and KOH decreased and increased the gas production, respectively. Catalyst deactivation took place under acidic conditions due to the loss of part of the active phase of the catalyst through leaching. The gas phase was made up of H2, CO2, CO and CH4. KOH exerted the greatest influence on the gas composition, increasing H2 production due to the greater gas production and the lower H2 consumption in the hydrogenation reactions. The liquid phase was made up of aldehydes, monohydric and polyhydric alcohols, C3 and C4 ketones and esters. CH3OH increased the proportion of monohydric alcohols, while CH3COOH promoted dehydration reactions, leading to an increase in the relative amount of C3-ketones

    Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam

    Get PDF
    In recent years, the growth of environmental protection policies has generated an increase in the global demand for activated carbon, the most widely used adsorbent in many industrial sectors, and with good prospects of implementation in others such as energy storage (electrodes in supercapacitors) and agriculture (fertilizer production). This demand is driving by the search for renewable, abundant and low-cost precursor materials, as an alternative to traditional fossil sources. This study investigates the production of activated carbon from barley straw using physical activation method with two different activating agents, carbon dioxide and steam. Experimental tests under different conditions at each stage of the process, carbonization and activation, have been conducted in order to maximize the BET surface area and microporosity of the final product. During the carbonization stage, temperature and heating rate have been found to be the most relevant factors, while activation temperature and hold time played this role during activation. Optimal conditions for the activation stage were obtained at 800 °C and a hold time of 1 h in the case of activation with carbon dioxide and at 700 °C and a hold time of 1 h in the case of activation with steam. The maximum BET surface area and micropore volume achieved by carbon dioxide activation were of 789 m2/g and 0.3268 cm3/g while for steam activation were 552 m2/g and 0.2304 cm3/g, which represent respectively an increase of more than 43% and 42% for the case of activation with carbon dioxide

    Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming

    Get PDF
    Cheese effluent management has become an important issue owing to its high biochemical oxygen demand and chemical oxygen demand values. Given this scenario, this work addresses the valorisation of lactose (the largest organic constituent of this waste) by aqueous phase reforming, analysing the influence of the most important operating variables (temperature, pressure, lactose concentration and mass of catalyst/lactose mass flow rate ratio) as well as optimising the process for the production of either gaseous or liquid value-added chemicals. The carbon converted into gas, liquid and solid products varied as follows: 5–41%, 33–97% and 0–59%, respectively. The gas phase was made up of a mixture of H2 (8–58 vol.%), CO2 (33–85 vol.%), CO (0–15 vol.%) and CH4 (0–14 vol.%). The liquid phase consisted of a mixture of aldehydes: 0–11%, carboxylic acids: 0–22%, monohydric alcohols: 0–23%, polyhydric-alcohols: 0–48%, C3-ketones: 4–100%, C4-ketones: 0–18%, cyclic-ketones: 0–15% and furans: 0–85%. H2 production is favoured at high pressure, elevated temperature, employing a high amount of catalyst and a concentrated lactose solution. Liquid production is preferential using diluted lactose solutions. At high pressure, the production of C3-ketones is preferential using a high temperature and a low amount of catalyst, while a medium temperature and a high amount of catalyst favours the production of furans. The production of alcohols is preferential using medium temperature and pressure and a low amount of catalyst

    Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: effect of operating conditions on the process

    Get PDF
    This work analyses the influence of the temperature (310–450 C), pressure (200–260 bar), catalyst/biooil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m3 STP, was made up of a mixture of H2 (9–31 vol.%), CO2 (41–84 vol.%), CO (1–22 vol.%) and CH4 (1–45 vol.%). The greatest H2 production from bio-oil (76% gas yield with a relative amount of H2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a temperature of around 344 C, a pressure of 233 bar, a catalyst/bio-oil ratio of 0.16 g/g and a reaction time of 9 min a compromise was reached between the yield and the quality of the upgraded liquid, enabling the transformation of 62% of the bio-oil into liquid with a HHV (29 MJ/kg) about twice as high as that of the original feedstock (17 MJ/kg)

    Analysis and optimisation of H2 production from crude glycerol by steam reforming using a novel two step process

    Get PDF
    This work studies the valorisation of biodiesel-derived glycerol to produce a hydrogen rich gas by means of a two-step sequential process. Firstly, the crude glycerol was purified with acetic acid to reduce problematical impurities. The effect of the final pH (5-7) on the neutralisation process was addressed and it was found that a pH of 6 provided the best phase separation and the greatest glycerol purity. Secondly, the refined glycerol was upgraded by catalytic steam reforming and this step was theoretically and experimentally studied. The theoretical study analyses the effect of the temperature (400-700°C), glycerol concentration (10-50 wt.%) and N2 (225-1347 cm3 STP/min) and liquid flow (0.5-1 mL/min) rates on the thermodynamic composition of the gas. The results show that the temperature and glycerol concentration exerted the greatest influence on the thermodynamics. The experimental study considers the effect of the temperature (400-700°C), glycerol concentration (10-50 wt.%) and spatial time (3-17 g catalyst min/g glycerol) on the product distribution in carbon basis (gas, liquid and solid) and on the composition of the gas and liquid phases. The experiments were planned according to a 2 level 3 factor Box-Wilson Central Composite Face Centred (CCF, a: ± 1) design, which is suitable for studying the influence of each variable as well as all the possible interactions between variables. The results were analysed with an analysis of variance (ANOVA) with 95% confidence, enabling the optimisation of the process. The gas phase was made up of a mixture of H2 (65-95 vol.%), CO2 (2-29 vol.%), CO (0-18 vol.%) and CH4 (0-5 vol.%). Temperatures of 550°C and above enabled thermodynamic compositions for the gas to be achieved and helped diminish carbon formation. A possible optimum for H2 production was found at a temperature of around 680°C, feeding a glycerol solution of 37 wt.% and using a spatial time of 3 g catalyst min/g glycerol. These conditions provide a 95% carbon conversion to gas, having the following composition: 67 vol.% H2, 22 vol.% CO2, 11 vol.% CO and 1 vol.% CH4
    corecore