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MaGSoundDST — 3D automatic inversion of magnetic and gravity
data based on the differential similarity transform

Daniela Gerovska1, Marcos J. Araúzo-Bravo2, Petar Stavrev3, and Kathryn Whaler1

ABSTRACT

We present an automatic procedure — Magnetic And Gravity
SOUNDing Differential Similarity Transform �MaGSoundDST�
— for inversion of regular or irregular magnetic- and gravity-
grid data measured on even or uneven surfaces. It solves for hori-
zontal position, depth, and structural index of simple sources and
is independent of a linear background. In addition, it estimates
the shape of sources consisting of several singular points and
lines. The method uses the property of the differential similarity
transform �DST� of a magnetic or a gravity anomaly to become
zero or linear at all observation points when the central point of
similarity of the transform, which we refer to as the probing
point, coincides with a source’s singular point. It uses a measured
anomalous field and its calculated or measured �gradiometry�
first-order derivatives. The method is independent of the magne-
tization-vector direction in the magnetic data case and does not

require reduction-to-the-pole transformed data as input. With
MaGSoundDST, we provide an important alternative interpreta-
tion technique to the Euler deconvolution procedures, combining
a moving-window method, whereby the solutions are linked to
singular points of causative bodies, with an approach in which
the solutions are linked to the real sources. The procedure in-
volves calculating a 3D function that evaluates the linearity of the
DST for different integer or noninteger structural indices, using a
moving window. We sound the subsurface along a vertical line
under each window center. Then we combine the 3D results for
different structural indices and present them in three easy-to-
interpret maps, avoiding the need for clustering techniques. We
deduce only one solution for location and type of simple sources,
which is a major advantage over Euler deconvolution. Appli-
cation to different cases of synthetic and real data shows the
method’s applicability to various types of magnetic and gravity
field investigations.

INTRODUCTION

The number of semiautomatic and automatic methods for inver-
sion of potential fields is growing fast �Nabighian et al., 2005�. Sev-
eral methods are based on the homogeneity property of the potential
fields from simple sources and use Euler’s equation �Thompson,
1982; Reid et al., 1990; Stavrev, 1997; Hsu, 2002; Keating and Pilk-
ington, 2004; Gerovska et al., 2005� or the direct expression of ho-
mogeneity �Moreau et al., 1997; Stavrev et al., 2006; Fedi, 2007�.
Another popular approach is to use the analytical expressions of dif-
ferent elements of the fields of certain geologic models, their trans-
formations, and ratios �Hartman et al., 1971; Naudy, 1971; Hansen
and Simmonds, 1993; Thurston and Smith, 1997; Stavrev, 2006�.

The different techniques input derivatives of different orders of
the magnetic or gravity potential or transformations that include
them. Increasing derivative order makes the procedures more sensi-
tive to noise in the data. Some of the methods take into account con-
stant �Thompson, 1982; Hsu, 2002; Gerovska et al., 2005�, linear
�Stavrev, 1997; Gerovska and Araúzo-Bravo, 2003; Stavrev, 2006�,
or nonlinear �Dewangan et al., 2007� backgrounds. The homogene-
ity-based methods contend with the problem of relating the estima-
tions of degree of homogeneity and location of detected singular
points to real shapes. On the other hand, methods that assume a sin-
gle source lack source resolution. Euler deconvolution procedures
produce numerous dispersed solutions related to a single source,
which makes them impractical without applying clustering tech-
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niques �Gerovska and Araúzo-Bravo, 2003; Mikhailov et al., 2003;
Ugalde and Morris, 2008�.

Our aim is to present a new automatic method to interpret poten-
tial-field data that produces a single solution corresponding to a sim-
ple source and links the methods using simple sources �e.g., Thomp-
son, 1982; Reid et al., 1990� with those assuming real shapes �Thur-
ston and Smith, 1997; Stavrev, 2006�. The Magnetic And Gravity
SOUNDing Differential Similarity Transform �MaGSoundDST� is
based theoretically on the differential similarity transform �DST�
�Stavrev, 1997; Stavrev et al., 2009�. It accounts for a linear back-
ground in the data and uses as input the field and only its first-order
derivatives, measured from gradiometry or calculated. The proce-
dure sounds the space under the data along vertical lines for a set of
structural-index values to produce a DST estimator-of-linearity
field. Depending on its value, we determine whether, at a certain
location, there is a gravity or a magnetic field source present and
its type. Therefore, although we do not directly estimate magnetiza-
tion or density as a function of depth as in well logging �Sheriff,
2002�, we do undertake a kind of sounding — hence, the name of the
method.

Afterward, three maps are compiled from the 3D estimator-of-
linearity functions obtained for different structural indices. The
anomalies of one map show the horizontal shape of the real sources,
and its local minima indicate the horizontal positions of the simple
sources. The other two maps show the structural-index distribution
and the depth to the simple sources, respectively, based on the hori-
zontal position of the local minima of the first map. The introduction
of these three new maps helps obtain a single solution for each
source detected, which is a significant step forward compared to pro-
cedures producing several spray solutions, sometimes referred to as
strings of pearls.

METHOD

Theory

The potential fields used in applied geophysics are space phenom-
ena that can be described in terms of affine geometry. In a 3D affine
space, the transform of similarity is a linear transformation of coor-
dinates using the equations �e.g., Gellert et al., 1979�

x�� tx� �1� t�a, y�� ty� �1� t�b,

z�� tz� �1� t�c, �1�

where t is a coefficient of similarity, �a,b,c� are the coordinates of a
central point of similarity �CPS�, and P��x�,y�,z�� is the similar im-
age of the original point P�x,y,z�. If t�1, then the geometric objects
preserve their integrity, shape, and orientation but change their sizes
by the coefficient td, where d is the space dimension of the geometric
object and d�0, 1, 2, or 3. Operator 1 for t � 0 shifts the observa-
tion points and the sources of a potential field, thus affecting the field
values in the transformed space. The difference between the original
and the transformed fields provides information about the source pa-
rameters �Stavrev, 1997�.

The similarity transformed field A� of an anomaly A can be calcu-
lated using the expression

A��x�,y�,z��� tnA�x,y,z�, �2�

where n is the degree of extended homogeneity of the gravity or
magnetic anomaly A with respect to all quantities of length dimen-
sion in the analytical expression of A �Stavrev and Reid, 2007�. The
degree of homogeneity is n�d�s�k, where s is an index for the
type of gravity and magnetic sources to be used �1 for point masses
and equivalent poles, 2 for dipoles, 3 for equivalent quadrupoles�
and where k characterizes A as a derivative of the potential of certain
order k�0, 1, 2, 3,. . ..

The normalized finite-difference similarity transform �FDST� for
A is defined as

D�x�, y�, z���
A��x�,y�,z���A�x�,y�,z��

t�1
, �3�

where A��x�, y�, z�� is given by equation 2 and A�x�, y�, z�� can be mea-
sured at level z� or calculated through analytical continuation of
A�x,y,z�.

The DST is the limit of the FDST when the coefficient t in equa-
tion 3 tends to one �see Appendix A�. The result is the analytical ex-
pression SA�x,y,z� of the DST �Stavrev, 1997�:

SA�x,y,z��nA� �a�x�
�A

�x
� �b�y�

�A

� y
� �c�z�

�A

� z
,

�4�

where A, its gradient components �A /�x�Ax, �A /� y�Ay, and
�A /� z�Az, its degree of homogeneity n, and the components
�a�x�, �b�y�, �c�z� of the distance vector rPC from the observa-
tion point P�x,y,z� to the CPS C�a,b,c� are related linearly. The CPS
position and the degree n are parameters of the DST function
SA�x,y,z�.

The DST function SA�x,y,z� can be treated as an anomalous field
related to A �Stavrev, 1997�. For example, the gravity potential
V�x,y,z� of a point mass m at point M�x0,y0,z0� with degree of homo-
geneity n��1 generates a DST function �seeAppendix B�

SV�x,y,z���V�x,y,z��rPC ·�PV�GmrCM ·�M
1

rMP
,

�5�

where G is the gravitational constant and rCM is the vector pointing
from C to M. The right-hand side of expression 5 is analogous to the
expression for the potential of a point magnetic dipole. Thus, the
DST of V is an anomaly of equivalent “gravity” dipole with a mo-
ment GmrCM proportional to the distance vector rCM. In the case of a
magnetic anomaly of a dipole at point M, the equivalent source of the
DST is a magnetic quadrupole at M with a moment depending on rCM

�Stavrev, 1997�.
The examples above show the physical sense of the DST from

anomalies of point sources.As a point C approaches the point source
at M, the moment of the equivalent source decreases; hence, the am-
plitude of the DST S also decreases. If C and M coincide, rCM �0
and the DST S�0 for all observation points P�x,y,z�. Thus, using a
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moving CPS as a probing point, we can locate the singular point M
and recognize its type through the parameter n.

The same possibility for a field inversion is valid for all other
types of singular points at M�x0,y0,z0� of gravity and magnetic
anomalies �Stavrev, 1997�. This common property can be proved by
substituting �a,b,c� with �x0,y0,z0� in equation 4:

SA�x,y,z��nA� �x0�x�
�A

�x
� �y0�y�

�A

� y

� �z0�z�
�A

� z
�0,

which is an equivalent form of Euler’s well-known differential equa-
tion for one-point sources �e.g., Reid et al., 1990�. In this particular
case, the DST approach results in a solution x0�a, y0�b, z0�c of
Euler’s equation for an isolated field A with one singular point.

The DST of potential fields of sources with complex shape and
distribution of physical properties has its respective integral expres-
sions and physical sense �Stavrev, 1997�. The value SA is a continu-
ous function that decreases as the CPS approaches the field’s singu-
lar point. This allows the design of effective deconvolution tech-
niques, including those suitable for more than one singular point
�Stavrev, 1997; Stavrev et al., 2009�.

The DST approach can be used in automatic deconvolution tech-
niques in the presence of a constant or linear background. The ob-
served field — say, F — usually contains a local anomaly A and a
background B, i.e., F�A�B. Within A, the background B can be
considered as a constant or a linear field B�x,y,z�� l�ux�vy
�wz. Then, operator 4 applied to F results in

SF�x,y,z��n�A�B�� �a�x�
� �A�B�

�x

� �b�y�
� �A�B�

� y
� �c�z�

� �A�B�
� z

�SA�x,y,z�� �nB� �a�x�u� �b�y�v

� �c�z�w��SA�x,y,z��SB�x,y,z�, �6�

where SB�x,y,z� is a linear function of the coordinates of the observa-
tion points.

If a CPS C�a,b,c� coincides with the singular point M�x0,y0,z0� of
anomaly A, then SA�x,y,z��0, and SF�x,y,z� takes the form of a plane
surface SB�x,y,z�. Thus, the inversion of A in the presence of a linear
background B can be implemented by a search for the position of the
CPS and the degree n that make the DST of F linear.

In an inverse procedure, the deviations of the data from the as-
sumed interpretation model can be considered as systematic noise.
The observed field F also contains random noise. If the sum of these
two types of noise is denoted by O�x,y,z�, then F�A�B�O. The
DST operator 4 is a linear operator; hence,

SF�x,y,z��SA�x,y,z��SB�x,y,z��SO�x,y,z� �7�

for the accepted degree of homogeneity of the target anomaly A.

The MaGSoundDST inversion procedure is a 3D Euler deconvo-
lution based on the property of the DST considered above. The pat-
tern of DST for different CPS from 2D interpretation models in wide
use is detailed in Stavrev et al. �2009�.

Estimating the linearity of the DST function

The linearity of a DST surface S through the observation points
within a window W is estimated by the residual dispersion after lin-
ear regression:

qS
2�a,b,c;n�� �j�1�DS

2�1�K2�, �8�

where j is the number of observation points, DS
2 is the dispersion, and

K is the generalization of the correlation coefficient of S to the 3D
case,

K�
1

�j�1�DSDxDy
�
i�1

j

�Si�Save��xi�xave��yi�yave�,

DS
2�

1

j�1 �
i�1

j

�Si�Save�2

where Save, xave, and yave are the average values of the S function and
the x- and y-coordinates in the frame of W:

Dx
2�

1

j�1 �
i�1

j

�xi�xave�2 and Dy
2�

1

j�1 �
i�1

j

�yi�yave�2.

The estimator qs gives the minimal deviation of the DST function
from its linear approximation, say, L�x,y,z�, in the frame of W. If a
CPS coincides with the source’s singular point, then the L and SB lin-
ear functions also coincide. In other cases, L may deviate from SB

and the real background B cannot be estimated.
When qS�0 for a window W, SF�x,y,z� is a linear function of the

horizontal coordinates. In the presence of noise, qS has a nonzero
minimum, reflecting the noise residual standard deviation q� . The
estimator of linearity qS can be normalized by the residual standard
deviation qF of the field F. Thus, the corresponding normalized rela-
tive standard deviation Q takes the form

Q�a,b,c;n��
qS�a,b,c;n�

qF
, �9�

where qF is calculated using expression 8 for the function F instead
of the function S. The minimum value of Q corresponds to the maxi-
mum linearity of the DST.

The normalized estimator Q attains small values when qF has high
values, i.e., around the extreme points of the anomalous field near
the horizontal position of the source’s singular point where at the
same time qS has small values because SA�x,y,z� is close to zero. The
estimator Q increases when moving away from the singular point;
where the value of qs is high, the anomalous field intensity is small
and the standard deviation qF is also small. Thus, the distribution of
the estimator Q takes into account the anomalous intensity and con-

DST magnetic and gravity sounding L27
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figuration, and is used for selecting reliable results from the inverse
procedure.

The negative of the degree of homogeneity n, N��n, which is
called the structural index �after Thompson, 1982�, reflects the type
of source geometry. It has attained popularity in practice; therefore,
from here on, we use the term structural index instead of degree of
homogeneity and the respective notation. A full description of the
structural indices N of simple interpretation models is given in
Stavrev and Reid �2007�.

Implementing the inversion method

The MaGSoundDST algorithm involves calculating the function
Q�a,b,c� of the field in the space under the surface of observations
for a series of assumed structural indices N using a moving window
W along the observation surface. It is a technique for processing data
sets comprising many, rather than one or two isolated, anomalies, so
we looked for a more compact and easy way to compare numerous
subsets of 3D functions. Thus, first we introduced a new 2D map
Q�Qmin� that combines all subsets of 3D functions Q�a,b,c;N� into a
bidimensional one by obtaining a single Qmin value for each vertical
probing line at each �a,b� horizontal location �see Figure 1a�. The
horizontal positions of the local minima of the so-obtained Q�Qmin�
map determine the horizontal positions of simple sources.

The values of the structural index N and the CPS depth c corre-
sponding to each local minimum of the Q�Qmin� map give the struc-
tural index and depth, respectively, of the corresponding simple
sources �Figure 1a�; these are mapped as N�Qmin� and Z�Qmin�, re-
spectively. The three new maps �Q�Qmin�, N�Qmin�, and Z�Qmin�� help
to estimate and present in a compact way not only the location and
structural index of simple sources, but also the shape of more com-
plex sources composed of several singular points and lines.

MaGSoundDST is implemented in a nine-step process. First, we
choose the CPS grid spacing and the number of probe points along
the vertical line under each window center �a,b� to cover the expect-
ed depths of the sources �see Figure 1a�.

Second, we choose the moving-window size. To detect the
sources, the dimensions of the window should be at least twice the
anticipated depth to the sources. Several window sizes should be
tried to find the optimal one, taking into account the main wave-
length of the observed anomaly or set of anomalies.

Third, we calculate the estimator of linearity Q�a,b,c;N� for a set
of structural indices between 0 and 3 for magnetic anomalies and
�1 and 2 for gravity anomalies �where negative values are appropri-
ate for gravity anomalies of transition type from thick contact mod-
els� using equations 9, 8, and 4. The structural indices may have inte-
ger or noninteger values to achieve higher resolution in the esti-
mates. The larger the number of the structural indices tested, the
higher the resolution. We introduce a 4D representation of
Q�a,b,c;N� based on a color codification of the values of Q in a 3D
space �see, e.g., Figure 2c-f in the following section�.

Fourth, we calculate a Q�Qmin� map by finding the minimum
value of Q�a,b,c;N� at each horizontal position �a,b� for all struc-
tural indices N and all depths c, i.e., the Q�Qmin� map is a map of
Qmin�Qmin�a,b��min

c,N
Q�a,b,c;N� �see Figure 1a and Figure 2b�.

Fifth, we find the local minima �Q�Qmin��min of the Q�Qmin� map,
for example, marked with a red circle in Figure 2b. A �Q�Qmin��min is
accepted if it is less than one, when the residual standard deviation qs

of the DST is smaller than the residual standard deviation qF of the

original field, because the DST should be straighter than the original
anomaly. This acceptance threshold value could be set lower for pre-
cise estimates, or it could be set higher, depending on the existing
signal-to-noise ratio �S/N�. The minima of the Q�Qmin� map deter-
mine the horizontal positions of singular points of the complex
sources. The pattern of the anomalies of the Q�Qmin� map define the
shape of the horizontal projections of complex sources such as intru-
sive sills, effusive plates, and horizontal rods.

Sixth, we calculate an N�Qmin� map by finding the structural index
corresponding to each value of the Q�Qmin� map. The values of the
N�Qmin� map at horizontal positions of the local minima of the
Q�Qmin� map determine structural indices of singular points. The
specific terraced pattern of the N�Qmin� maps also helps to determine
the shape of the horizontal projection of the sources.

Seventh, we calculate a Z�Qmin� map by finding the CPS depth
corresponding to each Q value from the Q�Qmin� map. The Z�Qmin�
values corresponding to the local minima in the Q�Qmin� map pro-
vide estimates of the depths to the singular points, defined by these
minima.

Eighth, we improve the locations of the minima of the Q�Qmin�
map so their respective simple sources are not restricted to CPS grid
points. The accuracy of MaGSoundDST in determining the coordi-
nates of simple sources is not limited by the spacing of the window
points and by the spacing of the vertical probe points. Once we find
the minima of the Q�Qmin� map, the grid position of the singular
point corresponding to each minimum of Q�Qmin�, �Q�Qmin��min, is
refined. For each �Q�Qmin��min, the MaGSoundDST procedure goes
back to the original location of the Qmin value in the 3D function
Q�N�, from which Qmin was extracted according to the rule described
in step 4 �red sphere in Figure 1a�. In the one-sphere case in Figure
2, this is the grid point with coordinates �5,5,1� km from
Q�N�3�. Then, from the Q values of all one-grid-point-radius
nearest neighbors �see Figure 1b�, interpolate the best-fitting ellip-
soid of constant Q value; its center is the refined singular point loca-
tion. The CPS grid points involved in implementing this refinement
form a truncated cube, i.e., without the eight vertices �cuboctahe-
dron�, shown in green in Figure 1b. When we apply the refinement
procedure, we find local minima at any point, as opposed to the dis-
crete minima confined to the CPS grid positions. The coordinates of
these new refined Q minima are the estimated locations of the simple
sources.

Finally, if necessary, we eliminate automatically those minima of
Q�Qmin� that coincide with points of the �a,b� probing set where the
windows are in the periphery of the anomalous fields, far from the
targeted singular points, where the field gradient is low. For small
windows, they also may fall on the flanks of an anomaly, where field
behavior is close to linear. Deconvolution using data in such win-
dows is unstable and the respective results are unreliable. Recogni-
tion of such points �a,b� is based on the value of qF in the window W
with center at the point �a,b�. If qF is less than an accepted after-test
threshold �qF�min, then the minimum of Q�Qmin� at the respective
point �a,b� should be rejected. We find a suitable �qF�min to be 75% of
the maximum of qF. Note that qF is dependent on window size and
field gradient.

RESULTS

Model tests

We applied MaGSoundDST to four different model data sets to
demonstrate various features of the technique. The first example is

L28 Gerovska et al.
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the inversion of the field of a magnetized sphere; it shows that MaG-
SoundDST works successfully on magnetic field data, is robust to
random noise, and can correctly estimate source coordinates when
the source does not coincide with a CPS grid point. The second ex-
ample is the inversion of magnetic data from five sources with inter-
fering fields; it demonstrates that the technique works in the pres-
ence of a linear background, that one solution is obtained per singu-
lar point, and that the three newly introduced maps help to relate the
solutions for singular points to real sources. The third simple exam-
ple, the inversion of the gravity field of a spherical mass, demon-
strates that MaGSoundDST works well with gravity data from sim-
ple sources. The fourth example illustrates an application to gravity
anomalies of transition type, i.e., from sources characterized by a
noninteger negative structural index.

The first example is noise-free magnetic model data of 40�40
points, generated by a spherical source �Figure 2a� with center at
�x0�5,y0�5,z0�1� km and having an induced magnetization
with inclination of 45° and declination of 0°. The CPS �a,b,c� set has
a 3D grid spacing of 0.25�0.25�0.25 km. The moving window is
21�21 points �5�5 km�. The lower half-space was probed with
six points along a vertical line under each window center. The mini-
mal Qmin obtained from the four tested structural indices �Figure
2c-f� is for N�3 �Qmin�0.00�, which corresponds to a spherical
source with center estimated at �a�5,b�5,c�1� km.

For N�0 �Figure 2c� and N�1 �Figure 2d�, no local minima of
Q were detected. Note that for inappropriate values of N, Q�N� may

not have any minima. A tentative value of N�2 resulted in a Qmin of
0.44 for a CPS at �a�5,b�5,c�0.6� km. Figure 2b shows the
newly introduced map Q�Qmin�, which combines the four 3D maps
Q�N�, namely, Q�0�, Q�1�, Q�2�, and Q�3� as described in step 4 of
the process and illustrated in Figure 1a, correctly estimating the
source position.

To check the performance of the local minimum refinement, we
tested the technique on the magnetic field caused by the same spheri-
cal source but located at �x0�4.85,y0�5.15,z0�0.85� km, i.e.,
the source does not coincide with a point of the CPS grid. If we
use the discrete minima option, the estimated sphere location is
�a�4.75,b�5.25,c�0.75� km for �Q�Qmin��min�0.38. If we use
the option for refined minima �step 8�, the refined location of the
source is �a�4.85,b�5.14,c�0.85� km for �Q�Qmin��min�0.38,
which is virtually coincident with the true source position.

Hypothesizing that each magnetic sensor for the signals A, Ax, Ay,
and Az could be affected by independent Gaussian noise, we per-
formed a perturbation analysis. We contaminated the four input
channels A, Ax, Ay, and Az for the analytical spherical magnetic case
with zero mean, Gaussian-distributed random noise in the range
10–15-dB S/N in 1-dB increments. We simulated 100 replicates for
each S/N; the perturbations of �Q�Qmin��min and its respective param-
eters �a,b,c,N� determined by MaGSoundDST are plotted in Figure
3. MaGSoundDST is robust for S/N of 11 dB and higher. The maxi-
mum amplitude of the noise for S/N of 11 dB is about 40 nT �Figure
3�, and the amplitude of the anomaly is about 300 nT �Figure 2a�.
For modern surveys, the noise level is less than 1 nT, which means
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Figure 1. Method of implementation. �a� Vertical trace line of the sounding method across the 3D Q matrices associated with all tested structural
indices. The blue spheres are the tentative probe points aligned on the vertical probing track line. The red sphere corresponds to the calculated lo-
cal minimum grid point. The Q�Qmin� map takes at point �i,j� the Q at the red sphere location, N�Qmin��i,j��3, Z�Qmin��i,j��3 length units.
�b� Set of grid points used to interpolate the local minimum around the calculated local minimum grid point. The interpolating grid points, shown
with blue spheres, define a cuboctahedron, shown in green.
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Figure 2. Model data set caused by a spherical magnetic source. �a�Anomalous magnetic field �T, in nT; �b� Q�Qmin� with minimum correctly lo-
cating the source position; �c-f� 3D maps of the estimator Q�a,b,c;N� of DST for structural indices N�0, 1, 2, and 3. The red spheres denote the
locations of local minima of Q and thus of the singular point �center� of the source. The view of the 3D contour maps Q has an azimuth of 48° and
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Figure 3. Noise analysis for the spherical-magnetic-source case. �a� Map of the corrupted signal A with one noise sample O�S /N�11 dB� and
�b-f� box plots of the distribution of the variability of �Q�Qmin��min and its respective parameters a, b, c, N for different S/N-contaminated sig-
nals. The box associated with each S/N has horizontal lines at the lower quartile, median, and upper quartile values. Whiskers extend to the most
extreme values within 1.5 times the interquartile range from the ends of the box, and outliers are displayed with a red plus sign. Notches display
the variability of the median between samples. The width of a notch is computed so that box plots whose notches do not overlap have different
medians at the 5% significance level. The significance level is based on a normal distribution assumption.
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that MaGSoundDST should perform well on interpreting anomalies
as small as 300 /40�7.5 nT.

The second model example is the inversion of synthetic data gen-
erated by five magnetic bodies with individual fields, interfering
somewhat to produce a linear or nonlinear background within cer-
tain windows. This is the same model used to test the Euler deconvo-
lution method based on the DST by Gerovska and Araúzo-Bravo
�2003�. The five bodies are two spheres, a sill, a vertical dike and a
horizontal rod, characterized by 10 singular points �Figure 4a
and Table 1�. The input data grid has 150�150 points. MaG-
SoundDST was applied for a CPS �a,b,c� set with a 3D grid spacing
of 0.25�0.25�0.1 km, a window of 11�11 points �2.5�2.5 km�,
and 40 vertical probe points.

Figure 5 shows the 3D Q spaces for tentative integer values 0, 1, 2,
and 3 of the structural index and the numerous local minima corre-
sponding to each space. When we combine these four 3D spaces ac-
cording to the procedure described in step 4 of the process, we obtain
a 2D Q�Qmin� map with only 10 local minima. The three maps,
Q�Qmin�, N�Qmin�, and Z�Qmin�, are shown in Figure 4. The 10 local
minima of Q�Qmin� estimate the horizontal positions of singular
points. Two of the singular points of source S2 are not detected with
minima of Q�Qmin� because of the proximity of the other two singu-
lar points, but this is compensated for by the fact that the overall hor-
izontal shape of the source is given by the pattern of Q�Qmin�. Source
S3 �vertical dike� and the horizontal rod S4 are each detected by
three minima.

The accuracy of the estimation is similar to that of the Euler de-
convolution procedure based on the DST �Gerovska and Araúzo-
Bravo, 2003�. Furthermore, with the new procedure, we avoid the
process of reducing the large number of spurious solutions to one es-
timate corresponding to each source and the necessary provision by
the interpreter of parameters of closeness accompanying it. The
maps Q�Qmin�, N�Qmin�, and Z�Qmin�, over which the minima of
Q�Qmin� are overlain, help to link the detected singular points and
their estimated structural indices to fully shaped, real sources. This is
a useful feature lacking in the representation of results by the stan-
dard Euler deconvolution procedure.

The third model example is a noise-free gravity data set
caused by a spherical source �Figure 6� with center at
�x0�60, y0�60, z0�9� km, having a 5-km radius and a 1-g /cm3

density contrast. The input data grid is 120�120 points. We applied
MaGSoundDST with a window of 21�21 points �20�20 km�. The
CPS grid has a 3D grid spacing of 1�1�1 km and 15 vertical probe
points. MaGSoundDST returns the correct horizontal position of
�60, 60� km, depth of 9 km, and structural index of 2. The 3D maps
of the estimator Q�a,b,c;N� for structural indices N�0, 1, and 2 are
given in Figure 7.

The fourth example is gravity-field inversion of Keating’s �1998�
model of two adjacent prisms measuring 2�2 km and buried at
a depth of 200 m. Both prisms have a depth extent of 5 km
and are located 1 km apart. Their density contrast is 0.25 g/cm3.
The gravity grid has 100�200 points and 50-m spacing in the two
directions. MaGSoundDST was applied with an 11�11 data win-
dow �500�500 m� and 60 vertical probe points. The CPS grid has a
3D grid spacing of 50�50�50 m. The results are shown in Figure
8. All of the estimates obtained indicate sources with structural indi-
ces of �0.5.

Keating �1998� uses a conventional Euler deconvolution with pre-
scribed structural index of 0 and estimates a depth “of around
250 m.” Stavrev and Reid �2007� show that for the gravity anomaly

of a vertical contact model between depths of one and five relative
units, considered as a one point source, the structural index N can
vary from �0.1 to 0.5, being 0 for a thin sheet. For the gravity anom-
aly created by the same vertical contact model considered as a two-
point source, they obtain N between �0.15 and �1.25, with N�

�1 for a contact of considerable thickness. The thickness of our
prisms is bigger than that in the study of Stavrev and Reid �2007� for
a contact with substantial thickness, but the prisms deviate consider-
ably from the model of a 2D contact. The depth estimates for the so-
lutions are between 150 and 350 m, with a mean of 210 m and stan-
dard deviation of 7.54 m, for Q�Qmin� between 0.02 and 0.06 —
closer to the true depth of 200 m than the “around 250 m” estimated
by Keating �1998�.

Magnetic data example from the Burgas region and
adjoining Black Sea shelf, southeast Bulgaria

The anomalous magnetic field in the Burgas region of Bulgaria
and the adjoining shelf is caused by the products of Upper Creta-
ceous magmatism, mainly by the Senonian andesite-basaltic and
trachyandesite-trachybasaltic effusive formations and by the
intrusive gabbro-monzonite-syenitic formation �Dachev, 1988�.
The structure of the anomalous magnetic field over the shelf indi-
cates the orientation of regional faults as well as the location of large
basic and ultrabasic bodies at depth, intruding along the faults.
Northwest-southeast faults �135°� and, to some extent, east-west
faults �90°–100°� manifest as magma-path structures. The geology
and magnetic field of the region are described in more detail in
Gerovska et al. �2009�.

We applied MaGSoundDST on a total-field, 128�180-point
magnetic data grid �T from southeast Bulgaria �Figure 9a�, covering
an area of the Burgas depression and the adjoining Black Sea shelf,
using a CPS set with 3D grid spacing of 0.5�0.5�0.1 km and a
window of 31�31 points �15�15 km�. The lower half-space was
probed up to a depth of 5 km �50 points�. The inversion results are in
Figure 9b-d and Table 2. We used a set of eight structural indices
from �0.5 to 3 in increments of 0.5. We also used a threshold
value of 2 �determined by trial and error� for Q because of the
low S/N, to accommodate the high interference level and the devia-
tion from anomalies from simple sources. If we compare the Q�Qmin�
and N�Qmin� maps with the magnitude magnetic anomaly
T� �X2�Y2�Z2�1/2 of the region by Stavrev and Gerovska
�2000�, the Q�Qmin� map and especially the terraced-pattern N�Qmin�
map outline very well the shape of the horizontal projections of the
complex sources.

We found 16 solutions �Table 2�. Solution 9 corresponds to the
most intense negative anomaly, located to the west of the city of Bur-
gas. According to the comparison of the magnitude magnetic trans-
forms T, E, and L by Stavrev and Gerovska �2000�, which are trans-
forms of different order of the magnetic potential, the source indicat-
ed by estimate 9 is deeper than the other sources in the area. The
estimated structural index is 1, which suggests a sheet or dike
source, and depth to the top of 1.9 km. Another group of estimates,
13–16, corresponds to the elongated west-northwest-east-southeast-
trending anomaly to the east of Nesebar. The structural index for
them is 1.5, which indicates a dike limited in depth. The depth to an
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Table 1. Real (x0,y0,z0,N) and estimated (a,b,c,Nest) parameters of the singular points (SP) of the five bodies causing the magnetic
anomalies in Figure 4a. The threshold value for Q is one.

Source SP x0 km a km y0 km b km z0 km c km N Nest �Q�Qmin��min

S1 sphere 1 17.5 17.6 17.5 17.4 3.0 3.0 3 3 0.07

S2 sill 1 25.0 24.8 10.5 10.2 1.0 0.9 1 1 0.47

2 25.0 24.7 13.5 13.9 1.0 0.8 1 1 0.56

3 27.0 13.5 1.0 1

4 27.0 10.5 1.0 1

S3 dike 1 22.5 22.5 19.0 18.7 1.0 0.8 1 1 0.08

2 22.5 22.5 31.0 31.3 1.0 0.8 1 1 0.07

22.5 27.0 0.8 1 0.07

S4 horizontal rod 1 8.0 7.9 25.0 25.0 1.5 1.5 2 2 0.07

9.8 25.0 1.0 1 0.21

2 15.25 15.2 25.0 24.9 1.5 1.5 2 2 0.17

S5 sphere 1 10.0 10.0 10.0 9.9 2.0 1.9 3 3 0.15
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internal point between the top and the center point of this sub-
vertically extended body elongated west-northwest-east-southeast
around 1.2 km �see Gerovska et al., 2005�. For the same body,
Stavrev �2006� obtains a structural index N�1.82 and depth to the
top of 1.5 km using magnitude transform ratios. Solution 5 in the
Black Sea shelf is for a structural index of 1 �dike� and depth to the
top of 1.3 km. The intense positive anomaly to the north of the town
of Primorsko generated solution 2, having a structural index of 0.5
and depth of 1.2 km. The source of this anomaly, the Rossen
intrusive �part of the Rossen ringlike palaeovolcanic center�, out-
crops in the coastal area. In this case, N�0.5 can be interpreted con-
ditionally because the minimum from the Q�Qmin� map does not co-

incide with the respective maximum area in the N�Qmin� map. The
maximum area in the N�Qmin� map corresponding to estimate 2 has a
value of around 1, appropriate for a dike. The depth of 1.2 km can be
interpreted as a depth to an internal point of the dike because the dike
outcrops. The results obtained with MaGSoundDST from this field
example can be compared with results using Euler deconvolution
based on the differential similarity transform �Gerovska andAraúzo-
Bravo, 2003�. The advantage of the simple presentation of the MaG-
SoundDST solutions over the Euler deconvolution results without
clustering are worth noting. A good clustering technique, though, as
proposed in Gerovska and Araúzo-Bravo �2003�, can alleviate the
problem of presentation of the results from Euler deconvolution.
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Figure 9. Field data from the Burgas region and the adjoining Black sea shelf and MaGSoundDST results: �a� anomalous magnetic field �T, in
nT; �b� Q�Qmin�; �c� N�Qmin�; �d� Z�Qmin� km.
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CONCLUSION

MaGSoundDST belongs to the same group of inversion proce-
dures as the popular Euler deconvolution method, based on the ho-
mogeneity property of the anomaly fields of simple gravity and mag-
netic sources. In contrast to all variations of the Euler deconvolution
method, which use a moving window, MaGSoundDST gives a sin-
gle solution corresponding to each detected simple source. Con-
versely, all Euler deconvolution techniques give numerous spurious
solutions, corresponding to a single simple source, posing the
need for clustering techniques to refer these many solutions to
their corresponding sources. The simplicity of the output of the
MaGSoundDST procedure is its major advantage over all Euler de-
convolution procedures. In spite of the use of a moving window,
with MaGSoundDST we achieved fewer solutions, compared to the
Euler deconvolution method. This means it is even feasible for the
interpreter to check the solutions manually.

An additional advantage of MaGSoundDST over the convention-
al Euler deconvolution technique is that it takes into account a linear
background, whereas the latter limits itself to accounting for only a
constant background; hence, MaGSoundDST is less susceptible to
interference from nearby sources. MaGSoundDST is an important
alternative approach for automatic, magnetic, and gravity data inver-
sion, combining a global moving-window method wherein each so-
lution links to singular points of causative bodies and where, through
the compilation of three new maps, Q�Qmin�, N�Qmin� and Z�Qmin�,
the solutions link to real sources.

MaGSoundDST is a new methodology applicable to any class of
optimization problems for which there is no more than one solution
in a projected space. Thus, the approach is applicable to a broad class
of inversion problems, including those related by Euler’s equation.
In this sense, it is possible to apply the approach directly to Euler’s
equation at the center of the window and choose the solution based
on the misfit for different values of depth and structural indices.

However, accounting for a linear background field in this case makes
the problem nonlinear.
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APPENDIX A

DERIVATION OF THE ANALYTICAL
EXPRESSION OF THE DST FROM
THE EXPRESSION FOR THE FDST

Expression 3 for the FDST leads to expression 4 for the DST as
the limit of D when t tends to 1:

S�P�� lim
t→1

D�P��� lim
t→1

A��P���A�P��
t�1

when P�→P .

�A-1�

The latter leads to A��P��→A�P� and A�P��→A�P�, i.e.,
A��P���A�P��→0 when t→1.

The 0 /0 uncertainty when t→1 can be resolved using
l’Hospital’s rule:

S�P�� lim
t→1

� �A��P���A�P���/� t

� �t�1�/� t
, �A-2�

where A��P��� tnA�P� is the transform of similarity of A�x,y,z� to
A��x�,y�,z�� from point C�a,b,c�. Thus, because

�A��P��
� t

�
� tnA�P�

� t
�ntn�1A�P� and

�A�P��
� t

�
�A�P��

�x

�x�

� t
�

�A�P��
� y

� y�

� t
�

�A�P��
� z

� z�

� t
,

and according to equation 1

�x�

� t
�x�a,

� y�

� t
�y�b,

� z�

� t
�z�c,

� �t�1�
� t

�1,

then

lim
t→1

D�x�,y�,z���nA�x,y,z�� �a�x�
�A

�x
� �b�y�

�A

� y

� �c�z�
�A

� z
�S�x,y,z�, �A-3�

which is equal to equation 4 for the DST.

Table 2. Estimated parameters (a km, b km, c km, Nest) of
magnetic field sources in the Burgas region of southeast
Bulgaria and the adjoining Black Sea shelf.

Number Nest a b c �Q�Qmin��min

1 0.5 15.1 61.5 0.5 1.99

2 0.5 16.5 51.2 1.2 1.41

3 0.0 19.4 15.2 0.2 1.73

4 0.0 29.2 38.1 0.2 1.38

5 1.0 29.9 75.2 1.3 1.66

6 0.0 30.9 56.9 0.1 1.63

7 0.0 35.9 51.1 0.2 1.89

8 0.0 36.8 48.8 0.3 1.68

9 1.0 38.0 20.0 1.9 1.56

10 0.5 38.1 28.3 0.7 1.53

11 0.0 41.5 34.5 0.2 1.98

12 0.0 42.8 28.2 0.1 1.40

13 1.5 49.2 78.6 1.1 1.79

14 1.5 50.2 73.7 1.0 1.58

15 1.5 50.3 68.7 1.2 1.42

16 1.5 52.9 57.7 1.3 1.64
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APPENDIX B

EXPRESSION FOR THE DST GENERATED FROM
THE GRAVITY POTENTIAL OF A POINT MASS

The gravity potential V of a point mass m has the well-known ex-
pression V�x,y,z��Gm /rMP, where G is the gravitational constant,
rMP� ��x�x0�2� �y�y0�2� �z�z0�2�1/2 is the distance between
the mass m at point M�x0,y0,z0� and the observation point P�x,y,z�.
The degree of Euler homogeneity of V is n��1. Then, according
to the DST equation 4,

SV�x,y,z���
Gm

rMP
�Gm��a�x�

�

�x
� 1

rMP
�

� �b�y�
�

� y
� 1

rMP
�� �c�z�

�

� z
� 1

rMP
�� .

�B-1�

Substituting equations

a�x� �a�x0�� �x0�x�, b�y� �b�y0�

� �y0�y�, c�z� �c�z0�� �z0�z�,

�

�x
� 1

rMP
��

x0�x

rMP
3 ,

�

�x
� 1

rMP
��

y0�y

rMP
3 ,

and

�

� z
� 1

rMP
��

z0�z

rMP
3

into equation B-1 and after simple manipulations, taking into ac-
count �PV���MV, we obtain

SV�x,y,z���
Gm

rMP
�Gm��x0�a�

�

�x
� 1

rMP
�

� �y0�b�
�

� y
� 1

rMP
�� �z0�c�

�

� z
� 1

rMP
��

�
Gm

rMP
, �B-2�

where the sum of the first and third term is zero and the second term
is the analytical expression for the potential U created by a point di-
pole at point M�x0,y0,z0� with a moment GmrCM proportional to the
distance rCM and the mass m. This is a gravity dipole as an equivalent
source of the DST field SV�x,y,z� �Stavrev, 1997�.

REFERENCES

Dachev, H., 1988, Structure of the earth’s crust in Bulgaria: Technika �in Bul-
garian�.

Dewangan, P., T. Ramprasad, M. V. Ramana, M. Desa, and B. Shailaja, 2007,
Automatic interpretation of magnetic data using Euler deconvolution with
nonlinear background: Pure andApplied Geophysics, 164, 2359–2372.

Fedi, M., 2007, DEXP:Afast method to determine the depth and the structur-
al index of potential field sources: Geophysics, 72, no. 1, I1–I11.

Gellert, W., H. Kastner, and S. Neuber, 1979, Lexikon der Mathematik: VEB
Bibliographisches Institut �in German�.

Gerovska, D., and M. J. Araúzo-Bravo, 2003, Automatic interpretation of
magnetic data based on Euler deconvolution with unprescribed structural
index: Computers & Geosciences, 29, 949–960.

Gerovska, D., M. J. Araúzo-Bravo, and P. Stavrev, 2009, Estimating the mag-
netization direction of sources from southeast Bulgaria through correla-
tion between reduced-to-the-pole and total magnitude anomalies: Geo-
physical Prospecting, 57, 491–505.

Gerovska, D., P. Stavrev, and M. J. Araúzo-Bravo, 2005, Finite-difference
Euler deconvolution algorithm applied to the interpretation of magnetic
data from northern Bulgaria: Pure andApplied Geophysics, 162, 591–608.

Hansen, R. O., and M. Simmonds, 1993, Multiple source Werner deconvolu-
tion: Geophysics, 58, 1792–1800.

Hartman, R., B. J. Teskey, and J. L. Friedberg, 1971, A system for rapid digi-
tal aeromagnetic interpretation: Geophysics, 36, 891–918.

Hsu, S. K., 2002, Imaging magnetic sources using Euler’s equation: Geo-
physical Prospecting, 50, 15–25.

Keating, P. B., 1998, Weighted Euler deconvolution of gravity data: Geo-
physics, 63, 1595–1603.

Keating, P., and M. Pilkington, 2004, Euler deconvolution of the analytic sig-
nal and its application to magnetic interpretation: Geophysical Prospect-
ing, 52, 165–182.

Mikhailov, V., A. Galdeano, M. Diament, A. Gvishiani, S. Agayan, S. Bo-
goutdinov, E. Graeva, and P. Sailhac, 2003, Application of artificial intelli-
gence for Euler solutions clustering: Geophysics, 68, 168–180.

Moreau, F., D. Gilbert, M. Holschneider, and G. Saracco, 1997, Wavelet
analysis of potential fields: Inverse Problems, 13, 165–178.

Nabighian, M. N., V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W.
Peirce, J. D. Phillips, and M. E. Ruder, 2005, The historical development
of the magnetic method in exploration: Geophysics, 70, no. 6, ND22–
ND61.

Naudy, H., 1971, Automatic determination of depth on aeromagnetic pro-
files: Geophysics, 36, 717–722.

Reid, A. B., J. M. Allsop, H. Granser, A. J. Millet, and I. W. Somerton, 1990,
Magnetic interpretation in three dimensions using Euler deconvolution:
Geophysics, 55, 80–91.

Sheriff, R. E., 2002, Encyclopedic dictionary of applied geophysics: SEG.
Stavrev, P., 1997, Euler deconvolution using differential similarity transfor-

mations of gravity or magnetic anomalies: Geophysical Prospecting, 45,
207–246.

——–, 2006, Inversion of elongated magnetic anomalies using magnitude
transforms: Geophysical Prospecting, 54, 153–166.

Stavrev, P., and D. Gerovska, 2000, Magnetic field transforms with low sen-
sitivity to the direction of source magnetization and high centricity: Geo-
physical Prospecting, 48, 317–340.

Stavrev, P., D. Gerovska, and M. J. Araúzo-Bravo, 2006, Automatic inver-
sion of magnetic anomalies from two height levels using finite-difference
similarity transforms: Geophysics, 71, no. 6, L75–L86.

——–, 2009, Depth and shape estimates from simultaneous inversion of
magnetic fields and their gradient components using differential similarity
transforms: Geophysical Prospecting, 57, 707–717.

Stavrev, P., and A. Reid, 2007, Degrees of homogeneity of potential fields
and structural indices of Euler deconvolution: Geophysics, 72, no. 1, L1–
L12.

Thompson, D. T., 1982, EULDPH: A new technique for making computer-
assisted depth estimates from magnetic data: Geophysics, 47, 31–37.

Thurston, J. B., and R. S. Smith, 1997, Automatic conversion of magnetic
data to depth, dip, and susceptibility contrast using the SPI™ method: Geo-
physics, 62, 807–813.

Ugalde, H., and B. Morris, 2008, Cluster analysis of Euler deconvolution so-
lutions: New filtering techniques and actual link to geological structure:
78thAnnual International Meeting, SEG, ExpandedAbstracts, 794–798.

L38 Gerovska et al.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/


