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ABSTRACT 12	
  

Cheese whey is a yellowish liquid by-product of the cheese making process. Owing to 13	
  

its high BOD and COD values, this feedstock should not be directly discharged into the 14	
  

environment without appropriate treatment. Before dealing with real cheese whey, this 15	
  

work addresses the production of a rich hydrogen gas from lactose (the largest organic 16	
  

constituent of this waste) by catalytic steam reforming. This reforming process has been 17	
  

theoretically and experimentally studied. The theoretical study examines the effect of 18	
  

the temperature (300-600 ºC), lactose concentration (1-10 wt.%) and N2 (0-80 cm3 19	
  

STP/min) and liquid flow (0.1-0.5 mL/min) rates on the thermodynamic composition of 20	
  

the gas. The results show that the temperature and lactose concentration exerted the 21	
  

greatest influence on the thermodynamics. The experimental study, conducted in a fixed 22	
  

bed reactor using a Ni-based catalyst, considers the effect of the temperature (300-600 23	
  

ºC), lactose concentration (1-10 wt.%) and spatial time (4-16 g catalyst min/ g lactose) 24	
  

on the global lactose conversion, product distribution on a carbon basis (gas, liquid and 25	
  

solid) and the compositions of the gas and liquid phases. Complete lactose conversion 26	
  

was achieved under all the experimental conditions. The carbon converted into gas, 27	
  

liquid and solid was 2-97%, 0-66% and 0-94%, respectively. The gas phase was made 28	
  

up of a mixture of H2 (0-70 vol.%), CO2 (20-70 vol.%), CO (2-34 vol.%) and CH4 (0-3 29	
  

vol.%). The liquid phase consisted of a mixture of aldehydes, ketones, carboxylic acids, 30	
  

sugars, furans, alcohols and phenols. Optimal conditions for cheese whey valorisation 31	
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were sought considering the energetic aspects of the process. Using a lactose 1	
  

concentration similar to that of cheese whey (5.5 wt.%), maxima for the CC gas (88%) 2	
  

and the proportion of H2 (67 vol.%) in the gas together with a carbon-free liquid stream 3	
  

can be achieved at 586 ºC using a spatial time of 16 g catalyst min/g lactose. 4	
  

Theoretically, the combustion of 20% of this gas provides the energy necessary for the 5	
  

process enabling the transformation of 68% of the carbon present in the initial effluent 6	
  

into a H2 rich gas (67 vol.%) with a global H2 yield of 16 mol H2/mol lactose. In a real 7	
  

case it would be necessary to increase the amount of gas combusted to compensate for 8	
  

heat losses. 9	
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1. Introduction  1	
  

Cheese whey is a yellowish liquid resulting from the coprecipitation and removal of 2	
  

milk casein in cheese making processes. On average, for the production of 1 kg of 3	
  

cheese 10 kg of milk are used, which produces 9 kg of cheese whey as a by-product. 4	
  

This is equivalent to 5 million tons a year of whey worldwide. Some of the most 5	
  

important components of whey are lactose and soluble proteins. Typically, cheese whey 6	
  

contains 4.5-6 wt.% lactose, 0.6-1.1 wt.% proteins, 0.8-1 wt.% minerals, 0.05-0.9 wt.% 7	
  

lactic acid, 0.06-0.5 wt.% fats and 93-94 wt.% of water [1-4]. This effluent produced by 8	
  

the cheese industry has BOD and COD values ranging from 27-60 kg/m3 and 50-102 9	
  

kg/m3, respectively. Therefore, it should not be directly discharged into the environment 10	
  

without appropriate treatment and/or valorisation [3]. In the past, most cheese factories 11	
  

released their effluents onto land or discharged them into rivers, lakes and/or oceans 12	
  

without any pre-treatment. However, as a result of environmental concerns and stricter 13	
  

regulations, cheese effluent management has become an important issue [1-4]. 14	
  

 15	
  

In this context, two different options for cheese whey management have normally been 16	
  

considered [3]. The first is the application of filtration technologies and 17	
  

physicochemical treatments such as coagulation-flocculation. These technologies aim to 18	
  

recover the most valuable compounds from cheese whey such as proteins and lactose. 19	
  

Filtration technologies can be used to separate lactose and proteins from whey [3]. 20	
  

Ultrafiltration membranes can be used to separate proteins and reverse osmosis to 21	
  

increase the lactose concentration in order to facilitate the evaporation of water and the 22	
  

crystallisation of lactose [2]. Physicochemical treatments include thermal and isoelectric 23	
  

precipitation [5, 6], as well as protein precipitation with coagulant/ flocculant agents [7]. 24	
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 1	
  

The second option relies on the application of biological treatments without 2	
  

valorisation, such as aerobic digestion, and with valorisation such as anaerobic 3	
  

digestion, lactose hydrolysis and fermentation for hydrogen and methane production 4	
  

[3]. Aerobic digestion consists of the degradation of the organic matter of whey at room 5	
  

temperature using short hydraulic retention times. However, the high organic content of 6	
  

cheese whey makes this technique inappropriate [8].  Anaerobic digestion takes place 7	
  

under mesophilic conditions (35-37 ºC) where lactose can be converted into propionic 8	
  

acid, ethanol and lactose acetates [9]. Lactose hydrolysis constitutes a preliminary step 9	
  

for other biological processes, as the number of microorganisms able to metabolise 10	
  

glucose and galactose are significantly higher than those that directly metabolise lactose 11	
  

[4].  12	
  

 13	
  

Cheese whey fermentation includes the production of ethanol, lactic acid, and hydrogen. 14	
  

The bioconversion of lactose to ethanol has a theoretical maximum yield of 0.538 kg 15	
  

ethanol/kg of lactose [10, 11]. However, cheese whey fermentation is hardly 16	
  

economically competitive if compared to other feedstocks, particularly when using 17	
  

diluted cheese whey solutions [3]. To improve the economy of the process, the 18	
  

anaerobic fermentation of the permeate solution obtained after subjecting cheese whey 19	
  

to an ultrafiltration process has been considered, increasing the concentration of the 20	
  

ethanol produced by up to 12% [11]. The production of lactic acid has usually been 21	
  

carried out using the concentrated cheese whey coming from ultrafiltration [12-16]. The 22	
  

greatest limitation for the production of lactic acid from cheese whey is the low yield of 23	
  

the process (3.8-12 kg/m3). 24	
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Anaerobic fermentation processes have been conducted for hydrogen production from 1	
  

different cheese whey effluents: the original cheese whey [17, 18], diluted cheese whey 2	
  

solutions [19-21], concentrated whey powder [22-24] and permeates resulting from 3	
  

different filtration processes [25]. The anaerobic fermentation has a theoretical yield of 4	
  

4 mol H2/mol lactose and produces a gas made up of a mixture of H2, CO2 and CH4. 5	
  

Different clostridium species [21] and facultative anaerobic species [24] have been used  6	
  

employing CSTR, batch, and UASB reactors [3]. COD reductions of around 80-90 % 7	
  

and lactose consumption between 87 and 97% have been reported [17-19, 21, 24, 25]. 8	
  

However, the residual liquid feed is still unsuitable for disposal as it contains different 9	
  

organics such as acetic, propionic and butyric acids and ethanol together with unreacted 10	
  

lactose.  11	
  

 12	
  

The presence of these compounds in the residual stream has led other authors [17, 18] to 13	
  

consider this residual effluent from H2 production for CH4 generation in anaerobic 14	
  

continuous bioreactors. A COD removal of 95.3% has been achieved, with 2.2 kg/m3 of 15	
  

COD remaining after the two anaerobic processes. Azbar and Dokgoz [19] treated this 16	
  

effluent by photo-fermentation with Rhodopseudomonas palustris in a two-step 17	
  

biological process. The authors concluded the process was inadequate due to the 18	
  

presence of nitrogen and volatile fatty acids in the solution. Diluting this effluent with 19	
  

L-malic acid, which simultaneously improves hydrogen production, can partially solve 20	
  

this problem and a final yield of 2-10 mol H2/mol lactose has been reported. However, 21	
  

the energy supplementation and the need for large volume bioreactors makes the 22	
  

process unreliable [3]. 23	
  

 24	
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Another interesting option for the treatment and valorisation of cheese whey effluents 1	
  

that has not been considered before is the use of thermochemical processes. Among 2	
  

these, catalytic steam reforming represents a challenging and promising alternative for 3	
  

the treatment of these residues. Steam reforming is one of the most widespread 4	
  

processes for the generation of a hydrogen-rich synthesis gas from organic compounds. 5	
  

This catalytic process, which is carried out at atmospheric pressure and at moderate 6	
  

temperatures, enables the organic matter of cheese whey to be transformed into a gas 7	
  

with a high hydrogen content, up to 70 vol.%, with many different posterior 8	
  

applications [26]. It also reduces the organic matter of the original feedstock to 9	
  

appropriate levels for safe discharge into the environment. A reaction pathway for 10	
  

lactose steam reforming is provided in section 2.4.  11	
  

 12	
  

The catalyst plays an important role in catalytic steam reforming. Specifically, it must 13	
  

enhance the reaction rate of the reforming process, which includes both the reforming 14	
  

reaction and the subsequent water gas shift (WGS) reaction. In addition, it must have 15	
  

high deactivation resistance and sufficient strength if the process is to take place in a 16	
  

fluidised bed reactor [27, 28]. A good approach to this challenge is using Ni-based 17	
  

catalysts. A Ni-Co/Al-Mg catalyst, which has been proved to be suitable for the 18	
  

catalytic steam reforming of bio-oil aqueous fractions [29, 30], was selected for this 19	
  

work. This catalyst includes Ni as the active phase. Ni based catalysts meet the 20	
  

challenge of being active and selective towards H2, although they are susceptible to 21	
  

deactivation by coking. Therefore, the catalyst was modified with Mg and Co. Mg was 22	
  

added as a support modifier, enhancing the water adsorption in order to gasify the coke 23	
  

or its precursors, as well as to provide more attrition resistance if the catalyst is to be 24	
  

used in a fluidised bed. Co was added as an active phase modifier to enhance the steam 25	
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reforming and WGS reactions and prevent catalyst deactivation by coking, as a Ni-Co 1	
  

interaction can be formed in the catalyst which reduces the crystallite size [30].  2	
  

 3	
  

Having a theoretical hydrogen yield of 24 mol H2/mol lactose, this process could be 4	
  

postulated as a suitable alternative for the treatment and valorisation of cheese whey. To 5	
  

the best of the authors’ knowledge, there are no studies in the literature concerning the 6	
  

catalytic steam reforming of cheese whey or lactose solutions. Furthermore, the works 7	
  

dealing with the catalytic steam reforming of sugars are extremely scarce. Hu and Lu 8	
  

[31] studied the catalytic steam reforming of glucose for H2 production, analysing the 9	
  

effect of the reaction time (0-3 h), temperature (300-600 ºC) and steam to carbon (S/C) 10	
  

ratio (3-9 mol H2O/mol C) on the process. Marquevich et al. [32] reported the effect of 11	
  

the temperature and S/C ratio on the catalytic steam reforming of xylose, glucose and 12	
  

sucrose. Both studies reached the same conclusions. An increase in the temperature 13	
  

increases gas production and the yield to H2 and reduces char formation. The S/C ratio 14	
  

plays a very important role in the process, decreasing solid formation and enhancing gas 15	
  

production, therefore high S/C ratios are necessary to ensure a high carbon conversion 16	
  

to gas.  These sugars are unstable at high temperatures and decompose before reaching 17	
  

the catalytic bed, which results in a serious formation of char in the upper part of the 18	
  

reactor, thus decreasing the efficiency of the process. Therefore, it was claimed in both 19	
  

works that minimising the thermal decomposition and avoiding char formation is one of 20	
  

the main challenges during the steam reforming of sugars. 21	
  

 22	
  

Given this background, this work analyses the catalytic steam reforming of a lactose 23	
  

solution, both theoretically and experimentally, as a possible option for the treatment 24	
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and valorisation of cheese whey effluents and/or lactose solutions. The theoretical study 1	
  

addresses the effect of the temperature (300-600 ºC), lactose concentration (1-10 wt.%), 2	
  

and N2 (0-80 cm3 STP/min) and liquid flow (0.1-0.5 mL/min) rates on the 3	
  

thermodynamics of the process. The experimental part includes an in depth study of the 4	
  

effect of the temperature (300-600 ºC), lactose concentration (1-10 wt.%) and mass of 5	
  

catalyst/lactose mass flow ratio (4-16 g catalyst min/g lactose) in a fixed bed reactor 6	
  

using a Ni-based catalyst.  7	
  

 8	
  

For cheese whey valorisation, it is not only important to produce a hydrogen rich gas 9	
  

from this waste, but also to come up with a carbon-free liquid stream that could be 10	
  

discharged to the environment. Therefore, the effect of the operating variables on gas, 11	
  

liquid and solid production and on the compositions of the gas and liquid phases has 12	
  

been exhaustively analysed. Furthermore, optimal values for the operating variables 13	
  

were sought and an energy balance was performed to provide a thorough technical and 14	
  

energetic analysis of the process. Given that the catalytic steam reforming of cheese 15	
  

whey or lactose solutions has never been reported before and that works dealing with 16	
  

the steam reforming of sugars are very scarce, this work represents a challenging and 17	
  

novel investigation not only for the management and valorisation of cheese whey but 18	
  

also for hydrogen production from sugars or sugar-based streams by catalytic steam 19	
  

reforming. 20	
  

 21	
  

 22	
  

 23	
  



	
   9	
  

2. Experimental 1	
  

2.1 Theoretical study 2	
  

Different simulations based on a 2 level 4 factor Box-Wilson Central Composite Face 3	
  

Centred (CCF, α: ± 1) design were carried out to analyse the influence on the 4	
  

thermodynamic gas composition (vol.%) of the reforming temperature (300-600 ºC), 5	
  

lactose concentration (1-10 wt.%), flow rate of N2 (0-80 cm3STP/min) and liquid flow 6	
  

rate (0.1-0.5 mL/min). The gas composition (vol.%) was theoretically calculated with 7	
  

the aid of the software Hysys 8.4 using the Gibbs energy minimisation method. Four 8	
  

thermodynamic packages (PRSV, Twu-Sim-Tasonee, Lee-Kesler-Plöcker and BWRS) 9	
  

were used for the calculations. This Gibbs reactor utility provides the theoretical 10	
  

equilibrium composition minimising the Gibbs free energy of the system, which allows 11	
  

calculating the thermodynamic equilibrium without introducing the reaction 12	
  

stoichiometry, as described in the works of Chen et al. [33], Wang et al. [34] and Duo et 13	
  

al. [35]  For this calculation, H2, CO, CO2, CH4, C2H2, C2H4, C2H6 were considered as 14	
  

output products for lactose steam reforming, which is in good agreement with the output 15	
  

products normally selected in reforming processes [34].  The results were analysed by 16	
  

means of an ANOVA test with 95% confidence. Furthermore, the relative influence of 17	
  

the operating variables was calculated using the cause-effect Pareto principle.  18	
  

 19	
  

2.2 Experimental reforming study 20	
  

The experimental study addresses the influence of the reforming temperature (300-600 21	
  

ºC), lactose concentration (1-10 wt.%) and ratio mass of the catalyst/lactose mass flow 22	
  

rate (W/mlactose = 4-16 g catalyst min/g lactose) on the catalytic steam reforming of 23	
  

lactose. The experiments were planned using a 2 level 3 factor Box-Wilson Central 24	
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Composite Face Centred (CCF, α: ± 1) design. The results were analysed with an 1	
  

analysis of variance (ANOVA) with 95% confidence and the cause-effect Pareto 2	
  

principle was used to determine their relative influence on the process.  This 3	
  

corresponds to a 2k factorial design, where k indicates the number of factors studied (in 4	
  

this case 3 operating variables) and 2k represents the number of runs (in this case 8) for 5	
  

the simple factorial design. 10 axial experiments were performed to study non-linear 6	
  

effects and interactions according to the CCF design. In addition, four replicates at the 7	
  

centre point (centre of the variation interval of each factor) were carried out in order to 8	
  

evaluate the experimental error. This experimental design is suitable not only for 9	
  

studying the influence of each variable (linear and quadratic effects) but also for 10	
  

understanding possible interactions between variables.  11	
  

 12	
  

The experimental rig used in the experiments was a microactivity unit designed and 13	
  

built by PID (Process Integral Development Eng & Tech, Spain). It consists of a small 14	
  

bench scale rig comprising a fixed bed reactor of 25 mm in height and 9 mm inner 15	
  

diameter. The lactose solutions were fed into the reactor with a HPLC pump. N2 was 16	
  

used as a carrier gas to facilitate the feeding of the solutions, as well as an internal 17	
  

standard for gas quantification. Liquid and N2 flow rates of 0.4 mL/min and 40 18	
  

cm3STP/min were used, respectively. Once inside the reactor, the feed down-flow 19	
  

passed through the catalytic bed, consisting of a mixture of catalyst and inert sand. The 20	
  

gaseous mixture passed to a condensation system consisting of a stainless steel vessel 21	
  

cooled by means of a Peltier thermoelectric cell where the condensable vapours were 22	
  

trapped. The permanent gases exiting the condensation system were analysed online 23	
  

with a micro gas chromatograph equipped with thermal conductivity detectors. More 24	
  

details concerning the set-up can be found in our previous communications [29, 30, 36].  25	
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 1	
  

A Ni-Co/Al-Mg catalyst prepared by coprecipitation was selected. The preparation 2	
  

involved adding a solution of NH4OH to a solution containing Ni(NO3)2·6H2O, 3	
  

Al(NO3)3·9H2O, Mg(NO3)2·6H2O and Co(NO3)2·6H2O dissolved in milli-Q water until a 4	
  

pH of 8.2 was reached, in a similar manner as reported in the work of  Wang et al. [34]. 5	
  

The precipitation medium was maintained at 40 ◦C and moderately stirred. The 6	
  

hydrated precursor was filtered, washed at 40 ◦C and dried overnight at 105 ◦C. 7	
  

Afterwards it was ground and sieved to a particle size ranging from 160 to 320 µm and 8	
  

calcined in an air atmosphere up to a temperature of 750 ◦C for 3h. Finally, it was 9	
  

activated in situ prior to reaction with H2 at 650 ºC. 10	
  

 11	
  

The catalyst has a 28% (relative atomic percentage) Ni expressed as 12	
  

Ni/(Ni+Co+Al+Mg), an atomic Mg/Al ratio of 0.26 and an atomic Co/Ni ratio of 0.10, 13	
  

with a BET surface area of about 132 m2/g. Crystalline phases of NiO/MgO and 14	
  

NiAl2O4/MgAl2O4 spinels were found in the X-ray diffraction (XRD) analysis of the 15	
  

calcined precursor. No crystalline phases of Co were detected by XRD. These 16	
  

crystalline phases are consistent with the TPR analyses, where two peaks were detected. 17	
  

A small peak was found at 300-320 ºC, corresponding to the reduction of the NiO phase 18	
  

as well as the reduction of the Co3O4 phase [37-39]. This may suggest a high Ni-Co 19	
  

interaction, which was confirmed by the positive shift of the binding energy of Ni 2p3/2 20	
  

detected in the XPS analysis.  A second higher intensity peak was found at 732 ºC, 21	
  

which might correspond to the reduction of the NiAl2O4 spinel phase. Further 22	
  

information about the characterisation of the catalyst can be found in our previous 23	
  

communication [30].  24	
  

 25	
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The lactose solutions were prepared dissolving D-lactose monohydrate (C12H22O11⋅H2O 1	
  

Sigma Aldrich, CAS Number 64044-51-5, Bio-Ultra >99.5 % HPLC) in Milli-Q water.  2	
  

 3	
  

Table 1. Response variables. Definitions and analytical techniques used in their 4	
  

determination. 5	
  

Product Response variable Analytical method 

 

Gas 
CC  gas   % =   

C  in  the  gas  (g)
C  fed  (g)   100 

Micro Gas Chromatograph (Micro GC). N2 as 

internal standard 

Online analyses Composition   vol.% =   
mol  of  each  gas  
total  mol  of  gas   100 

 

 

Liquid 

CC  liq   % =   
C  in  the  liquid  products  (g)

C  fed  (g)   100 
Total Organic Carbon (TOC).  

Composition   area  % =   
area  of  each  compound  

total  area   100 
GC-MS (Gas Chromatography-Mass Spectrometry) 

X  lactose   % =   
lactose  fed   g − lactose  in  the  liquid  (g)    

lactose  fed  (g)   100 
HPLC (High Performance Liquid Chromatography)  

Offline analyses 

 

Solid 

CC  sol   % = 100 − CC  gas   % − CC  liq∗  (%)  

CC  coke   % =   
C  on  the  catalyst  (g)

C  fed  (g)   100 
Elemental Analysis 

Offline analysis 

CC  char   % = CC  sol   % − CC  coke  (%)  

 
C  (mg  /g  cat. g  org. )   =   

C  on  the  catalyst   g ∗ 1000
g  catalyst  g  lactose  reacted     

 

 6	
  
CC liq = Carbon conversion to liquid products (unreacted lactose free). 7	
  
CC liq* = Carbon conversion to liquids including unreacted lactose 8	
  

 9	
  
The response variables studied were: the lactose conversion (X lactose, %), the carbon 10	
  

conversion to gas, liquid and solid products (CC gas, CC liq and CC sol, %) and the 11	
  

compositions of the gas (vol.%) and the liquid condensate (relative chromatographic 12	
  

area free of water and unreacted lactose, %). The CC sol includes both the carbon 13	
  

deposited on the catalyst (coke) and the char. The used catalyst was characterised by 14	
  

elemental analysis to calculate the amount of carbon deposited on the catalyst surface. 15	
  

The CC coke and the amount of C deposited with respect to the amount of catalyst and 16	
  

lactose reacted (mg C/g catalyst g lactose reacted) were calculated from these analyses. 17	
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Table 1 summarises the response variables and the analytical methods used for their 1	
  

calculation. 2	
  

 3	
  

2.3 Data analysis 4	
  

In the simulations made for the theoretical study and in the fixed bed experiments, the 5	
  

lower and upper limits of all the factors (temperature, lactose concentration and liquid 6	
  

and N2 flow rates in the theoretical study and temperature, lactose concentration and 7	
  

W/mlactose ratio in the experimental study) were normalised from -1 to 1 (codec factors). 8	
  

This codification permits all factors to vary within the same interval and helps to 9	
  

investigate their influence in comparable terms. 10	
  

 11	
  

The experimental study analyses the effect of the operating conditions on the response 12	
  

variables as well as the evolution of the response variables with time. To analyse the 13	
  

evolution with time, the results are presented divided into three intervals of 60 minutes. 14	
  

Each interval provides the average value of the response variable obtained during 60 15	
  

minutes of experiment. All these values (three per experiment) have been compared 16	
  

using a one-way analysis of variance (one-way ANOVA) and Fisher´s least significant 17	
  

difference (LSD) test, both with 95% confidence. The results of the ANOVA analyses 18	
  

are provided as p-values. P-values lower than 0.05 indicate that at least two values are 19	
  

significantly different. The LSD test was used to compare pairs of data, i.e. either 20	
  

between two intervals of the same experiment or between two intervals of two different 21	
  

experiments. The results of the LSD tests are presented graphically in the form of LSD 22	
  

bars. To ensure significant differences between any pairs of data, their LSD bars must 23	
  

not overlap.  24	
  



	
   14	
  

 1	
  

The effect of the operating variables on the process has been studied considering the 2	
  

results corresponding to the first 60 minutes of reaction using a statistical analysis of 3	
  

variance (one-way ANOVA) test with 95% confidence. This avoids including the 4	
  

activity variation with time in the analysis. The ANOVA analysis helped to select the 5	
  

operating variables and interactions that significantly influence the response variables 6	
  

under consideration. In addition, the cause-effect Pareto principle was also used to 7	
  

calculate their relative importance on the process.  8	
  

 9	
  

2.4 Possible reaction network for lactose steam reforming 10	
  

Lactose steam reforming includes reforming, cracking and thermal decomposition 11	
  

reactions due to the instability of sugars at high temperatures [31, 32]. 12	
  

 13	
  

1- Reforming reactions: 14	
  

Steam reforming of the oxygenated compounds: lactose and intermediate products 15	
  

C12H22O11 + H2O à 12 CO + 12 H2  (ΔH 298K = 1181 kJ/mol)  (Eq. 1) 16	
  

CnHmOk + (n-k) H2O ⇔ n CO + (n+m/2 –k) H2     (Eq. 2) 17	
  

Water gas shift (WGS) reaction: 18	
  

CO + H2O ⇔ CO2 + H2   (ΔH 298K = -41 kJ/mol)  (Eq. 3) 19	
  

Methane steam reforming and dry reforming: 20	
  

CH4 + H2O ⇔ CO + 3 H2   (ΔH 298K = 206 kJ/mol)  (Eq. 4) 21	
  

CH4 + 2 H2O ⇔ CO2 + 4 H2  (ΔH 298K = 165 kJ/mol)  (Eq. 5) 22	
  

 CH4 + CO2 ⇔2 CO + 2 H2 (ΔH 298K = 247 kJ/mol)  (Eq. 6) 23	
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2- Thermal decomposition and cracking reactions 1	
  

CnHmOk à Liquids (CxHyOz )+ Gas (H2, CO, CO2, CH4, …) + carbon    (Eq. 7) 2	
  

 3	
  

 4	
  

Figure 1. Possible reaction pathways during the thermal decomposition of lactose. 5	
  

 6	
  

The thermal decomposition of lactose produces organic liquid intermediates of different 7	
  

nature, gases and carbonaceous residues. Figure 1 shows a possible reaction pathway 8	
  

for the formation of the most important liquid products during the thermal 9	
  

decomposition of lactose, taking into account the work of Carlson et al. [40]. The 10	
  

formation of these compounds starts with an initial lactose decomposition by hydrolysis 11	
  

into glucose and galactose, which can be subsequently decomposed into other 12	
  

intermediate liquids. At a low temperature and low pyrolysis rate, both monomers 13	
  

evolve towards the formation of oxygenated compounds of low molecular mass such as 14	
  

acids, aldehydes, ketones and alcohols by retro-aldol and grob fragmentation reactions. 15	
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At high temperatures and a fast pyrolysis rate the formation of anhydrosugars is 1	
  

favoured. These compounds can subsequently be dehydrated to give furanic 2	
  

compounds. Mono-aromatic compounds can be formed from both furans and small-3	
  

oxygenates by oligomerisation, decarboxylation and decarbonylation reactions. Poly-4	
  

aromatic species can be produced as a final step from mono-aromatics.  5	
  

 6	
  

3. Results and discussion 7	
  

3.1 Theoretical study 8	
  

Table 2 shows the simulations performed and the results obtained in the theoretical 9	
  

study. For each gas an empirical model that relates the operating variables (temperature, 10	
  

lactose concentration, N2 and liquid flow rates) to the volumetric composition of the gas 11	
  

was developed according to the ANOVA analysis. The relative influence of each factor 12	
  

in the model was calculated making use of the cause-effect Pareto principle. The results 13	
  

of these analyses are summarised in Table 3. 14	
  

 15	
  

The thermodynamic results predict a complete lactose conversion to gas for all the 16	
  

simulations. Lactose has a C/O ratio close to 1, which permits complete conversion to 17	
  

be achieved at low temperatures [31, 41]. The ANOVA analysis reveals that the 18	
  

temperature, lactose concentration, liquid flow rate and N2 flow rate have a statistically 19	
  

significant influence on the equilibrium composition of the gas (p-values < 0.05), 20	
  

although their relative influence is different. The cause-effect Pareto analysis shows that 21	
  

the gas composition is strongly affected (more than 77 of relative influence) by the 22	
  

temperature, concentration of lactose and an interaction between these two variables. 23	
  



	
   17	
  

The weak influence of the liquid and N2 flow rates is related to the small variations in 1	
  

the partial pressures inside the reactor when varying these flow rates, which have a 2	
  

slight affect on the thermodynamic equilibrium [33]. As a direct consequence, the 3	
  

majority of works dealing with steam reforming only consider the effects of the 4	
  

concentration of the organic compounds (or steam to carbon ratio, S/C) and the 5	
  

temperature in thermodynamic studies.  6	
  

	
  7	
  
Table 2. Thermodynamic gas composition results for the simulations. The gas 8	
  
composition is expressed as the 95% confidence interval for the mean obtained with the 9	
  
different thermodynamic packages. 10	
  

	
  11	
  
Sim [Lactose] 

(wt.%) 
Qliq 

(mL/min) 
QN2 

(mL/min) 
T 

(ºC) 
H2 

(vol.%) 
CO2 

(vol.%) 

CO 
(vol.%) 

CH4 

(vol.%) 

 Codec Actual Codec Actual Codec Actual Codec Actual     
1 -1 1 -1 0.1 -1 0 -1 300 66.60-66.62 33.20-33.22 0.001-0.001 0.173-0.176 
2 1 10 -1 0.1 -1 0 -1	
   300 37.21-37.27 40.55-40.57 0.039-0.039 22.14-22.18 
3 -1 1 1 0.5 -1 0 -1	
   300 66.60-66.62 33.20-33.22 0.009-0.009 0.173-0.176 
4 1 10 1 0.5 -1 0 -1	
   300 37.21-37.27 40.55-40.56 0.039-0.039 22.14-22.18 
5 -1 1 -1 0.1 1 80 -1	
   300 66.76-66.76 33.17-33.17 0.009-0.009 0.065-0.066 
6 1 10 -1 0.1 1 80 -1	
   300 42.38-42.39 39.25-39.26 0.048-0.048 18.30-18.31 
7 -1 1 1 0.5 1 80 -1	
   300 66.66-66.66 33.20-33.20 0.009-0.009 0.137-0.138 
8 1 10 1 0.5 1 80 -1	
   300 38.48-38.52 40.24-40.26 0.041-0.041 21.19-21.21 
9 -1 1 -1 0.1 -1 0 1 600 66.77-66.78 33.07-33.07 0.154-0.155 0.00 – 0.00 

10 1 10 -1 0.1 -1 0 1	
   600 66.25-66.26 32.02-32.02 1.720-1.721 0.007-0.007 
11 -1 1 1 0.5 -1 0 1	
   600 66.77-66.78 33.07-33.07 0.154-0.155 0.00-0.00 
12 1 10 1 0.5 -1 0 1	
   600 66.25-66.26 32.02-32.02 1.720-1.721 0.007-0.007 
13 -1 1 -1 0.1 1 80 1	
   600 66.78-66.78 33.07-33.07 0.154-0.154 0.00-0.00 
14 1 10 -1 0.1 1 80 1	
   600 66.26-66.26 32.02-32.02 1.720-1.721 0.003-0.003 
15 -1 1 1 0.5 1 80 1	
   600 66.78-66.78 33.07-33.07 0.154-0.155 0.00-0.00 
16 1 10 1 0.5 1 80 1	
   600 66.26-66.26 32.09-32.09 1.720-1.721 0.005-0.005 
17 0 5.5 0 0.3 0 40 0 450 66.62-66.62 32.99-32.99 0.310-0.311 0.078-0.078 
18 -1 1 0 0.3 0 40 0	
   450 66.82-66.82 33.13-33.13 0.053-0.053 0.00-0.00 
19 1 10 0 0.3 0 40 0	
   450 65.54-65.54 33.05-33.05 0.585-0.585 0.819-0.819 
20 0 5.5 -1 0.1 0 40 0	
   450 66.65-66.65 32.98-32.98 0.311-0.311 0.055-0.055 
21 0 5.5 1 0.5 0 40 0	
   450 66.62-66.62 32.99-32.99 0.310-0.310 0.084-0.084 
22 0 5.5 0 0.3 -1 0 0	
   450 66.61-66.61 32.98-32.98 0.309-0.309 0.095-0.095 
23 0 5.5 0 0.3 1 80 0 450 66.65-66.65 32.98-32.98 0.311-0.311 0.065-0.065 
24 0 5.5 0 0.3 0 40 -1 300 50.82-50.82 37.16-37.16 0.033-0.033 11.98-11.98 
25 0 5.5 0 0.3 0 40 1 600 66.54-66.54 32.57-32.57 0.895-0.895 0.001-0.001 

	
  12	
  
 13	
  
Taking this information into account, two different models were developed. The first 14	
  

was a full model used for prediction purposes which includes all the significant effects 15	
  

and interactions of the four operating variables. The second was a simplified model 16	
  

which only includes the effects of the temperature, the lactose concentration and 17	
  

temperature-lactose concentration interactions. This was used for studying the 18	
  

thermodynamics of the process. The full model (not shown) indicates that the relative 19	
  



	
   18	
  

amounts of H2, CO2, CO and CH4 in the gas vary as follows: 38.2-69.0 vol.%, 31.7-40.3 1	
  

vol.%, 0.0-1.7 vol.% and 0.0-21.0 vol.%, respectively. 2	
  

 3	
  

Table 3. Relative influence of the studied variables and their interactions on the 4	
  
thermodynamic composition of the gas according to the ANOVA analysis for the 5	
  
simplified model 6	
  
	
  7	
  

 Independent term T C T C T2 T2 C Others 
H2 (vol.%) 66.59 6.91 ns 6.82 -7.22 -7.08  

  (26)  (25) (10) (26) (13) 
CO2 (vol.%) 32.99 -2.07 ns -2 1.69 1.48  

  (30)  (28) (9) (21) (13) 
CO (vol.%) 0.31 0.46 0.27 0.38 0.17 0.13  

  (35) (30) (29) (5) (2) (1) 
CH4 (vol.%) 0.11 -5.29 ns -5.2 5.37 5.21  

  (26)  (25) (10) (25) (13) 

	
  8	
  
ns. Non significant with 95% confidence 9	
  

 10	
  
Response variable = Independent term + Coefficient T·T + Coefficient C·C + Coefficient TC·TC + Coefficient T2·T2 + Coefficient T2C·T2C  11	
  
 12	
  

Table 3 shows the terms of the simplified model and the relative importance of all the 13	
  

variables according to the Pareto test. The effects of the N2 and liquid flow rates and 14	
  

their interactions have been grouped together under the term “others”. The lack of fit for 15	
  

all the simplified models is not significant in comparison with the pure error (p-value > 16	
  

0.05) and their R2 is higher than 0.99 in all cases. In addition, no significant differences 17	
  

were observed between the values predicted with the models and the values obtained in 18	
  

the simulations, with 95% confidence. This indicates that they are able to predict up to 19	
  

99% of the variations observed, confirming the slight effect of the liquid and N2 flow 20	
  

rates on the thermodynamic results in this work and the good accuracy of the models 21	
  

developed. 22	
  

 23	
  

As regards the relative influence of the operating variables on the process, the codec 24	
  

model listed in Table 3 shows that within the interval of study considered in this work, 25	
  

the temperature (the linear term and its interaction with the lactose concentration) exerts 26	
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the highest influence on the equilibrium composition. The quadratic effect for the 1	
  

temperature (T2) is significant, which indicates the existence of maxima and minima. 2	
  

Conversely, quadratic terms for the lactose concentration are not significant with 95% 3	
  

confidence, denoting a linear evolution for this operating variable. In addition, a 4	
  

significant interaction between the temperature and the concentration of lactose was 5	
  

detected; therefore the effect of the lactose concentration depends on the temperature 6	
  

and vice versa. The effect of the temperature is related to the variations of the 7	
  

thermodynamic equilibrium constant of all the reactions involved in the process, while 8	
  

the effect of the concentration (1-10 wt.%) is linked to the variations in the water 9	
  

content of the solutions (variations in the S/C ratio from 157 to14 mol H2O/mol C). 10	
  

High S/C ratios help to shift the WGS and methane reforming reactions towards the 11	
  

formation of H2 [42].  12	
  

 13	
  

Figure 2 shows the interaction plots between the temperature and lactose concentration 14	
  

obtained from the models shown in Table 3, obtained from the statistical analysis of the 15	
  

results obtained in the simulations listed in Table 2. Specifically, the volumetric gas 16	
  

composition (vol.%) is plotted as a function of the temperature for the lowest and the 17	
  

highest (1 and 10 wt.%) lactose concentrations employed in this work. In general, an 18	
  

increase in the temperature between 300 and 600 ºC increases the proportions of H2 and 19	
  

CO in the gas, reducing the relative amounts of CO2 and CH4. The reforming reaction 20	
  

of lactose (Eq. 1) is highly endothermic and the water gas shift reaction (Eq. 3) is 21	
  

moderately exothermic [31], giving an overall endothermic process. Thus, an increase 22	
  

in temperature augments the equilibrium concentration of H2 and CO in the gas. The 23	
  

proportions of CH4 and CO2 in the gas decrease due to the endothermic nature of the 24	
  



	
   20	
  

reforming (Eqs. 4-5) and dry reforming (Eq.6) of methane as well as the exothermic 1	
  

character of the WGS reaction, respectively [42].  2	
  

 3	
  

Figure 2. Evolution with temperature of the thermodynamic concentration of H2 (a), 4	
  

CO2 (b), CO (c) and CH4 (d) for the lowest (1 wt.%) and highest (10 wt.%) lactose 5	
  

concentrations obtained with an ANOVA analysis of the simulations. 6	
  

 7	
  

These variations are more appreciable as the concentration of lactose in the solution 8	
  

increases due to the significant interaction between the temperature and the lactose 9	
  

concentration. This makes the effect of the temperature on the composition of the gas 10	
  

extremely weak for very diluted lactose solutions (1 wt.%) due to the large amount of 11	
  

water employed (S/C = 157 mol H2O/mol C).   12	
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Conversely, an increase in the lactose concentration from 1 to 10 wt.% increases the 1	
  

effect of the temperature. An increase in the lactose concentration has two different 2	
  

consequences depending on the temperature. On the one hand, between 300 and 450 ºC, 3	
  

an increase in the amount of lactose in the solution reduces the proportion of H2, 4	
  

augmenting the relative amounts of CO2 and CH4 in the gas. Within this temperature 5	
  

range, an increase in the concentration of lactose diminishes the excess of water, thus 6	
  

decreasing the steam to carbon (S/C) ratio of the solution from 157 to 14 mol H2O/mol 7	
  

C. This originates a lesser shift of the WGS and methane reforming reactions towards 8	
  

H2 production.  9	
  

 10	
  

On the other hand, between 450 and 600 ºC, the same increment in the concentration of 11	
  

lactose increases the proportions of H2 and CO and reduces the concentration of CO2 in 12	
  

the gas. The variation in the relative amount of H2 is relatively small, since the optimum 13	
  

for H2 production is found to be at temperatures around 500-550 ºC. These variations 14	
  

are the consequence of the greater spread of reforming reactions at high temperature, 15	
  

which favours H2 production.  16	
  

 17	
  

3.2 Experimental study 18	
  

3.2.1 Global lactose conversion and carbon distribution: CC gas, CC liq and CC sol.  19	
  

Table 4 lists the experiments performed in the fixed bed reactor. A complete and steady 20	
  

global lactose conversion (X lactose) was achieved in all the experiments, indicating 21	
  

that all the lactose was converted into gas, liquid and solid products. The C/O ratio close 22	
  

to 1 of lactose allows complete conversion to be achieved even at the lowest 23	
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temperature used in this work [31, 41].  Complete conversions were achieved at 1	
  

temperatures higher than 500 ºC in the work of Hu et al. [31] during the steam 2	
  

reforming of glucose. Figure 3 shows the CC gas, CC liq and CC sol obtained for the 3	
  

experiments in three intervals of 60 min. The statistical analysis reveals significant 4	
  

differences between the results obtained in the experiments for the CC gas, CC liq and 5	
  

CC sol (p-values < 0.001), which vary as follows:  2-97%, 0-66% and 0-95%, 6	
  

respectively. In addition, increases and reductions in the CC gas, CC liq and CC sol are 7	
  

detected in some experiments.  8	
  

 9	
  

Table 4. Experimental operating conditions (actual and codec values) used in the 10	
  
experiments.	
  11	
  

	
  12	
  
Run 

Temperature 
(ºC) 

[Lactose]  
(wt.%) 

W/mlactosa  
(g catalyst min/g lactose) 

 Codec Actual Codec Actual Codec Actual 
1 -1 300 -1 1 -1 4 
2 1 600 -1 1 -1 4 
3 -1 300 -1 1 1 16 
4 1 600 -1 1 1 16 
5 -1 300 1 10 1 4 
6 1 600 1 10 1 4 
7 -1 300 1 10 1 16 
8 1 600 1 10 1 16 

9* (9, 10, 11, 12) 0 450 0 5.5 0 10 
13 -1 300 0 5.5 0 10 
14 1 600 0 5.5 0 10 
15 0 450 0 5.5 -1 4 
16 0 450 0 5.5 1 16 
17 0 450 -1 1 0 10 
18 0 450 1 10 0 10 
19 1 600 0 5.5 1 16 
20 -1 300 0 5.5 1 16 
21 1 600 0 5.5 -1 4 
22 -1 300 0 5.5 -1 4 

	
    * Four replicates at the centre point: runs 9, 10, 11 and 12 13	
  
	
  14	
  

The general trend for the CC gas is a reduction with time. Reductions are clearly 15	
  

observed in runs 2, 4, 6, 8, 9*, 14-19 and 21 and might be the consequence of the 16	
  

progressive deactivation of the catalyst. All these experiments were conducted at a 17	
  

temperature higher than 450 ºC. A decay in the CC gas with time was also reported in 18	
  

the work of Hu et al. during the steam reforming of glucose [31]. A comparison 19	
  

between experiments 2 and 4 shows how an increase in the W/mlactose ratio increases the 20	
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initial CC gas due to the positive kinetic effect that the catalyst exerts on the process. 1	
  

Furthermore, a greater value of the W/mlactose ratio results in a lessening of the decay of 2	
  

the CC gas over time. This trend is also observed for runs 6 and 8. However, run 8 3	
  

displays an initial increase in the CC gas followed by a posterior decay. This 4	
  

phenomenon could account for the progressive gasification of the carbonaceous 5	
  

deposits formed by an incomplete vaporisation of the feed, as has been reported in other 6	
  

works dealing with the steam reforming of sugars [31, 32, 36].  7	
  

	
  8	
  

9	
  
Figure 3. Conversion to gas (a), liquid (b) and solid (c) obtained during the reforming 10	
  

experiments. Results are presented as the overall values obtained each 60 minutes and 11	
  

expressed as mean ± 0.5 Fisher LSD intervals with 95% confidence. 12	
  

 13	
  

The effect of the lactose concentration is seen when comparing runs 2 with 6 and 4 with 14	
  

8. An increase in the concentration of lactose decreases the excess of water, and 15	
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consequently the S/C ratio. This decreases the reaction rate of the gasification reactions 1	
  

of the carbonaceous deposits and increases the reduction over time of the CC gas. 2	
  

Similar trends have been reported during the steam reforming of xylose, glucose and 3	
  

sucrose [31, 32].  4	
  

 5	
  

Runs 1, 3, 5, 7, 13, 20 and 22 display a steady and low CC gas (<5%). All these 6	
  

experiments were conducted at 300 ºC using different lactose concentrations and 7	
  

W/mlactose ratios. These results indicate that gas production is not favoured at low 8	
  

temperatures. Under these conditions, the lactose concentration and W/mlactose ratio do 9	
  

not exert a significant influence on the CC gas due to the endothermicity of the 10	
  

reforming reactions. 11	
  

 12	
  

The CC sol displays increases and decreases with time. On the one hand, for runs 13	
  

conducted at 300 ºC (1, 3, 5, 7, 13, 20 and 22) the CC sol is high at the start of the 14	
  

experiment and progressively decreases with time. Sugar molecules are unstable at the 15	
  

temperatures of this process and quickly decompose through pyrolysis, leading to the 16	
  

formation of char particles and gases [32]. The accumulation of this char in the upper 17	
  

part of the reactor might have a positive catalytic effect on lactose pyrolysis and/or 18	
  

cracking reactions. Char obtained from the pyrolysis of different biomass materials has 19	
  

been reported to have catalytic activity for the reforming and cracking of different 20	
  

hydrocarbons [43-49], which accounts for the drops over time observed for the CC sol 21	
  

[31, 32] and the increases in the CC liq. 22	
  

 23	
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Conversely, for runs conducted at higher temperatures (450-600 ºC), where the 1	
  

vaporisation of the solution is more favoured and carbon deposits can be removed by 2	
  

gasification due to the relatively high temperature and high S/C ratio of the feed, the CC 3	
  

sol increases or remains steady over time. The increases are the consequence of the 4	
  

progressive deactivation of the catalyst, which originates a decrease in the CC gas and 5	
  

an increase in the CC sol [31, 32].  In addition, the accumulation of char particles in the 6	
  

upper part of the reactor hinders the vaporisation of the feed as the atomisation system 7	
  

is not as effective when the liquid comes into contact with solid particles, leading to 8	
  

bigger droplet sizes. Consequently, the evaporation takes places at lower heating rates. 9	
  

This enhances the formation of more carbonaceous deposits, augmenting the formation 10	
  

of char over time, which increases the CC sol [50].	
  However these variations do not 11	
  

take place in runs 16, 17 and 21, where a steady CC sol is obtained. These runs were 12	
  

conducted using a high W/mlactose ratio and a medium lactose concentration (run 16), an 13	
  

intermediate W/mlactose ratio and a low lactose solution (run 17) and high temperature 14	
  

and an intermediate lactose concentration (run 21). These conditions reach a 15	
  

compromise between carbon deposit formation and elimination that can provide a 16	
  

steady evolution for the CC sol.  17	
  

 18	
  

As regards the evolution over time for the CC liq, increases with time are observed for 19	
  

the vast majority of experiments. These increases have two different backgrounds. On 20	
  

the one hand, for the experiments with an initial high CC gas (2, 6, 9*, 14-18), the 21	
  

increase in the CC liq accounts for the progressive deactivation of the catalyst, which is 22	
  

not able to completely transform the organic content of the feed into gas, thus increasing 23	
  

the proportion of intermediate liquid products originating from thermal decomposition 24	
  

and incomplete reforming.  On the other hand, for the experiments with both an initial 25	
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low CC gas and a high CC sol (1, 3, 5, 7, 13, 20 and 22), the increases might be the 1	
  

consequence of the formation of liquid condensable products from the progressive 2	
  

pyrolysis of the feed and or/the carbon deposits (mainly as char), thus increasing the CC 3	
  

liq over time.  4	
  

 5	
  

Interestingly, experiments 4, 8 and 19, which were conducted at a high temperature 6	
  

(600 ºC) and high spatial time (16 g catalyst min/g lactose), display negligible CC liq 7	
  

and a relatively high amount of CC gas regardless of the lactose concentration. The 8	
  

COD values for 1, 5.5 and 10 wt.% lactose solutions are 11.5, 63.5 and 115.5 kg/m3, 9	
  

respectively. The liquid condensate obtained in experiments 4, 8 and 19 (1, 10 and 5.5 10	
  

wt.% of lactose, respectively) has COD values of 3.29, 4.60 and 1.59 kg/m3, 11	
  

respectively. This corresponds to a reduction in the COD of the solutions of 71, 96 and 12	
  

97%, respectively, with respect to the original feedstock. Therefore, high temperatures 13	
  

and spatial times enhance gas formation from the vaporised part of the feed, thus 14	
  

producing an almost carbon free liquid condensate with a considerably lower COD than 15	
  

that of the original feedstock.  16	
  

 17	
  

To gain a better insight into the carbon deposition, the carbon deposited on the used 18	
  

catalysts was examined and the solid carbon distribution between char and coke was 19	
  

calculated. Table 5 lists the CC coke, CC char and the amount of C deposited on the 20	
  

catalysts during the reforming experiments. The results indicate that the vast majority of 21	
  

the CC sol is due to the formation of char. In general more than 80% of the total solid C 22	
  

is due to char formation. This proportion increases up to 90% for the experiments 23	
  

conducted at 300 ºC, confirming the significant formation of carbonaceous solid at low 24	
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temperatures. Char production is highly likely to occur during the thermal 1	
  

decomposition of lactose. Lactose is unstable when heated at the temperatures 2	
  

employed in this work and it decomposes before reaching the catalytic bed, resulting in 3	
  

severe char formation in the upper part of the reactor. This tendency of sugars to 4	
  

decompose giving char has also been reported for xylose, glucose and sucrose [31, 32]. 5	
  

The statistical analysis of the amount of carbon (expressed as mg C/g catalyst g lactose 6	
  

reacted to produce gases) reveals that the highest deposition takes place at 300 ºC 7	
  

(groups A to G). Furthermore, a relatively high amount of this carbon is deposited on 8	
  

the catalyst surface, proving evidence for the experimentally observed catalyst 9	
  

deactivation. This catalyst deactivation by coking has been reported in other works 10	
  

dealing with the steam reforming of other oxygenated compounds. A very detailed 11	
  

mechanism for coke deposition, explaining the deactivation of Ni-based catalysts by 12	
  

coking, is provided in the work of Wang et al. [51]. 13	
  

 14	
  

Table 5. Solid carbon distribution. Overall 3 hours carbon conversion to solid, char 15	
  
and coke and C deposited on the catalyst.	
  16	
  
	
  17	
  
Run CC solid (%) CC char (%) CC coke (%) C (mg C/g cat. g org.) 
1 72.27 A 70.83 A 1.44 H 39.84 A 

2 11.28 K, L 10.67 L 0.61 I 1.21 I 
3 43.64 F 39.54 F 4.10 C 21.50 D 

4 8.10 L 6.01 M 2.09 F, G 0.51 L, M, N 

5 64.08 B 62.20 B 1.88 F, G, H 25.09 C 
6 25.76 H, I 22.84 H, I 2.93 E 0.68 J, K, L 

7 52.86 C, D 47.17 E 5.69 B 11.03 G 

8 15.55 J, K 9.03 L, M 6.52 A 0.16 N 

9* 25.06 ± 0.98 I 24.55 ± 0.72 J 0.51 ± 0.12 D 0.84 ± 0.08  J, K 

13 54.96 C 51.58 C 3.37 D, E 18.17 F 

14 30.00 G H 25.87 G, H 4.13 C  0.58 K, L, M 

15 52.32 C, D, E 50.79 C, D 1.53 H 4.15 H 

16 29.99 G, H 26.10 G 3.89 C, D 0.23 M, N 

17 16.21 J 14.53 K 1.68 G, H 1.01 I, J 
18 32.24 G 26.17 G 6.07 A, B 0.59 K, L, M 

19 22.72 I 16.32 K 6.40 A 0.32 L, M, N 

20 47.98 E, F 41.49 F 6.49 A 19.65 E 

21 22.62 I 20.22 I, J 2.40 F 1.20 I 
22 50.43 D, E 48.21 D, E 2.21 F 32.91 B 
	
  18	
  
Letters in each column represent LSD statistically significant groups with 95% confidence according to the ANOVA analysis. 19	
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  1	
  
The specific effect of the operating conditions as well as their possible interactions on 2	
  

the process has been studied using the results obtained during the first 60 minutes of 3	
  

reaction. The models created in terms of codec factors considering the ANOVA analysis 4	
  

of the experiments performed (Table 4) are presented in Table 6. The reaction 5	
  

temperature is the operating variable with the highest influence on the CC gas and CC 6	
  

sol. An increase in the temperature increases and decreases the CC gas (positive term in 7	
  

the model) and CC sol (negative term in the model), respectively. An increase in the 8	
  

temperature not only facilitates the vaporisation of the feed, decreasing the formation of 9	
  

solid carbon, but also favours the reforming process due to its endothermic nature [31, 10	
  

32]. Furthermore, the effect of the temperature depends on the W/mlactose ratio due to the 11	
  

significant interaction between these two variables. The CC liq is significantly 12	
  

influenced by the temperature and W/mlactose ratio.  An increase in the temperature 13	
  

decreases the CC liq (negative term in the model) due to the positive effect that the 14	
  

temperature exerts on the gas production from the intermediate liquid compounds 15	
  

resulting from the thermal decomposition of lactose.  16	
  

 17	
  

Table 6. Relative influence of the operating conditions on the CC gas, CC liq and CC 18	
  
sol according to the ANOVA analysis for the first hour of reaction. 19	
  
	
  20	
  

Variable R2 I. Term T W C TW TC WC TWC T2 W2 C2 T2W T2C TW2 TC2 WC2 TWC2 

CC gas 
(%) 0.98 38.6 34.01 25.18 -13.39 7.64 ns ns ns ns ns ns -16.64 11.5 ns ns Ns ns 

 (52) (17) (5) (11)       (9) (6)     
CC liq 
(%) 0.95 30.72 -15.85 -11.24 ns -10.28 -4.78 ns 6.53 ns -11.97 ns 9.49 ns ns 10.61 Ns ns 

 (22) (7)  (22) (8)  (11)  (9)  (8)   (12)   
CC sol 
(%) 0.99 26.74 -18.1 -13.94 12.04 ns 6.56 ns -4.45 10.21 10.55 -5.77 11.37 -8.3 ns -10.71 -6.32 3.53 

 (35) (11) (7)  (7)  (5) (8) (4) (0.1) (4) (4)  (8) (4) (4) 

	
  21	
  
ns. Non significant with 95% confidence 22	
  

 23	
  
Response variable = Independent term + Coefficient T·T + Coefficient W·W + Coefficient C·C + Coefficient TW·TW + Coefficient 24	
  
TC·TC + Coefficient WC·WC + Coefficient TWC·TWC + Coefficient T2·T2 + Coefficient W2·W2 + Coefficient C2·C2 + Coefficient 25	
  
T2W·T2W + Coefficient T2C·T2C + Coefficient TW2·TW2 + Coefficient TC2·TC2 + Coefficient WC2·WC2 + Coefficient TWC2·TWC2 26	
  
	
  27	
  
 28	
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The effects of the operating variables on the CC gas, CC liq and CC sol are shown in 1	
  

Figure 4. The evolution of these variables was obtained from the ANOVA analysis 2	
  

(Table 6) of all the experiments performed (Table 4). In addition, when possible, some 3	
  

experimental points were added. Specifically, Figures 4 a and b show the effect on the 4	
  

CC gas of the temperature for W/mlactose ratios of 4 and 16 g catalyst min/g lactose when 5	
  

1 and 10 wt.% lactose solutions were used, respectively. Figures 4 c and d and e and f 6	
  

illustrate these effects for the CC liq and CC sol, respectively. In general, the CC gas 7	
  

and CC sol show opposite trends. An increase in the temperature augments the CC gas 8	
  

and reduces the CC sol, as discussed above. 9	
  

 10	
  

Figure 4. Interaction plots for the initial CC gas (a and b) and CC liq (c and d) and CC 11	
  

sol (e and f). Bars are LSD intervals with 95% confidence. 12	
  

 13	
  

With respect to the effect of the W/mlactose ratio, an increase from 4 to 16 g catalyst 14	
  

min/g lactose increases the CC gas and decreases the CC sol due to the positive catalytic 15	
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effect the catalyst has on the reforming reaction and the pyrolysis and gasification of 1	
  

solid deposits [31, 32]. However, this increment depends on the temperature and lactose 2	
  

concentration. At temperatures between 300 and 350 ºC, an increase in the W/mlactose 3	
  

ratio from 4 to 16 g catalyst min/g lactose does not have a statistically significant 4	
  

influence on the CC gas. Within this temperature range, the vaporisation of the feed is 5	
  

not favoured and the vast majority of the organics are converted into carbonaceous 6	
  

deposits or liquid intermediates. Therefore an increment in the amount of catalyst 7	
  

(W/mlactose ratio) does not have a significant influence on the CC gas.  8	
  

 9	
  

Conversely, as the temperature increases and the formation of gas is most favoured, an 10	
  

increase in the W/mlactose ratio significantly augments the CC gas. An almost complete 11	
  

CC gas can be achieved at temperatures higher than 500 ºC when a 1 wt.% lactose 12	
  

solution is fed. This increment in the W/mlactose ratio diminishes the CC solid regardless 13	
  

of the temperature. However, this drop depends on the concentration of lactose and the 14	
  

W/mlactose ratio.  15	
  

 16	
  

The effect of the concentration of lactose can be gathered comparing Figures 4 a with b 17	
  

and e with f.  An increase in the concentration of lactose in the solution from 1 to 10 18	
  

wt.% reduces the CC gas between 350 and 550 ºC, as explained above. As the lactose 19	
  

concentration increases, the formation of carbonaceous deposits obtained from an 20	
  

incomplete vaporisation of the feed is most favoured due to the reduction of the S/C 21	
  

ratio (157 and 14 mol H2O/mol C for 1 and 10 wt.% lactose solutions, respectively) that 22	
  

lowers the excess of water. The excess of water in the feed not only helps the 23	
  

vaporisation of lactose but also helps the conversion of the carbonaceous deposits to 24	
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take place. Hu et al. [31] reported these trends when increasing the S/C ratio from 3 to 9 1	
  

mol H2O/mol C during the steam reforming of glucose and concluded that at high S/C 2	
  

ratios the high partial pressure of steam in the reactor favours char removal by 3	
  

gasification and promotes the adsorption of steam on the active sites of the catalyst, 4	
  

helping to reduce coke formation. Marquevich et al. [32] found an increase in gas 5	
  

production together with a decrease in solid formation  during the steam reforming of 6	
  

glucose and xylose when increasing the S/C ratio from 7 to 47 and 14 to 37 mol 7	
  

H2O/mol C, respectively.  8	
  

 9	
  

Employing a W/mlactose ratio of 16 g catalyst min/g lactose, a complete CC gas can be 10	
  

obtained at temperatures higher than 500 and 600 ºC when lactose solutions of 1 and 10 11	
  

wt.% are fed, respectively. This increase in the concentration of lactose increases the 12	
  

CC sol for the whole range of temperatures studied in this work except for temperatures 13	
  

lower than 350 ºC, where the formation of carbonaceous deposits is similar. 14	
  

 15	
  

The effect of the temperature on the CC liq depends on the lactose concentration and 16	
  

W/mlactose ratio, since a significant interaction between these variables was detected. For 17	
  

a 1 wt.% lactose solution, an increase in the temperature between 300 and 600 ºC has 18	
  

two different effects depending on the W/mlactose ratio. On the one hand, when a 19	
  

W/mlactose ratio of 4 g catalyst min/ g lactose is used, the CC liq increases as the 20	
  

temperature increases. However, the opposite trend is found when a W/mlactose ratio of 21	
  

16 g catalyst is used. This increase in temperature favours the reforming process, 22	
  

decreasing the CC sol. However, when a low amount of catalyst is used the CC liq 23	
  

increases, since this amount of catalyst in the bed may be insufficient for a complete 24	
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conversion of the organics of the feed (lactose and its decomposition products) into 1	
  

gases, thus increasing the production of intermediate liquids. However, when a higher 2	
  

amount of catalyst is used, the reaction rate of the reforming reactions towards gas 3	
  

production increases and therefore both the CC sol and CC liq decrease.  4	
  

 5	
  

The effect of the concentration of lactose on the CC liq can be seen when comparing 6	
  

Figure 4 c with 3d. This effect depends on the W/mlactose ratio. When a W/mlactose ratio 7	
  

of 4 g catalyst min/g lactose is used, two different tendencies are found for the CC liq, 8	
  

depending on the temperature. For temperatures lower than 450 ºC, an increase in the 9	
  

lactose concentration augments the CC liq. At this temperature range, the reforming 10	
  

process is not favoured. In addition, this increase in the lactose concentration reduces 11	
  

the excess of water of the feed, leading to a lower extension of the reforming reactions 12	
  

and thus increasing the CC liq. In contrast, at temperatures higher than 450 ºC the same 13	
  

increment in the concentration of lactose reduces the CC liq. At these temperatures, the 14	
  

CC sol is lower for a 1 wt.% than for a10 wt.% solution. This drop in the CC sol 15	
  

enhances the formation of intermediate liquid products, increasing the CC liq. 16	
  

 17	
  

3.2.2 Gas composition 18	
  

Figure 5 shows the gas composition obtained for the different experiments. The gas 19	
  

phase consists of a mixture of H2 (0-70 vol.%), CO2 (20-70 vol.), CO (2-34 vol.%) and 20	
  

CH4 (0-2.4 vol.%). Statistically significant (p-values<0.05) variations are observed for 21	
  

the gas composition between experiments and intervals of the same experiment.  22	
  

 23	
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The highest variations with time for the relative amounts of H2 and CO2 in the gas are 1	
  

observed for runs conducted at 300 ºC (3, 5, 7, 13, 20 and 22), where the proportions of 2	
  

H2 and CO2 in the gas decrease and increase, respectively. These experiments were 3	
  

conducted at the lowest temperature employed in this work (300 ºC), and where the 4	
  

greatest amount of coke was deposited on the used catalysts (more than 11 mg C/g 5	
  

catalyst g organic reacted). This accounts for the catalyst deactivation by coking and 6	
  

indicates that the temperature exerts a significant influence on catalyst deactivation. The 7	
  

temperature significantly influences the reforming process, increasing the reaction rate 8	
  

of the reforming reactions, thus partially compensating for the catalyst deactivation.  9	
  

 10	
  

Figure 5. Concentration (vol.%) of H2 (a), CO2 (b) CO (c) and CH4 (d) in the gas. 11	
  

Results are presented as the overall values obtained each 60 minutes and expressed as 12	
  

mean ± 0.5 Fisher LSD intervals with 95% confidence. 13	
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In addition, during the reforming process an initial thermal decomposition of the 1	
  

organic compounds might occur before reaching the catalytic bed. This produces gases 2	
  

(mainly H2, CO, CO2 and CH4), other intermediate or decomposition products and char 3	
  

[32]. The gases and the intermediate products evolve towards achieving the 4	
  

thermodynamic composition for the gas when passing through the catalytic bed, which 5	
  

results in an increase and a decrease in the proportions of H2 and CO2, respectively.  6	
  

 7	
  

Comparing the experiments conducted at the same temperature, the lower the W/mlactose 8	
  

ratio, the higher are the reductions with time in the proportion of H2. High W/mlactose 9	
  

ratios allow having a greater amount of active catalyst in the bed, thus minimising the 10	
  

decay observed for the proportion of H2 in the gas. This finding can be appreciated by 11	
  

comparing the following experiments: 2 and 4; 6 and 8; and 9, 15 and 16.  12	
  

 13	
  

Some variations with time are observed for the proportions of CO and CH4 in the gas. 14	
  

The proportion of CO increases with time due to the progressive deactivation of the 15	
  

catalyst and the lesser shift of the WGS reaction towards H2 and CO2. The greatest 16	
  

increases in the proportion of CO occur at low temperatures, where the highest 17	
  

deactivation of the catalyst is observed. An exception to this occurs in experiment 3, 18	
  

where the decrease in the proportion of H2 is accompanied by an increase in both the 19	
  

proportions of CO and CO2, probably due to the decrease over time observed in the 20	
  

evolution of the CC sol, which slightly increases the amount of C in the gas. The 21	
  

proportion of CH4 in the gas remains steady with time for the vast majority of the 22	
  

experiments.  23	
  

 24	
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The specific effects of the operating conditions as well as their possible interactions on 1	
  

the volumetric composition of the gas were studied considering the results obtained 2	
  

during the first 60 minutes of reaction. Table 7 lists the results of the statistical analyses. 3	
  

The temperature (linear and quadratic terms) is the operating variable exerting the 4	
  

highest influence on the proportions of H2, CO2 and CO in the gas (relative importance 5	
  

of 31%, 19% and 31%, respectively). The interaction between the temperature and the 6	
  

quadratic term for the W/mlactose ratio has the highest influence (21%) on the 7	
  

concentration of CH4 in the gas. The coefficients of the codec models show how an 8	
  

increase in the temperature increases the concentration of H2 in the gas (positive term) 9	
  

while reducing the proportion of the other gases (negative term). The concentration of 10	
  

lactose individually does not influence the gas composition. However, significant 11	
  

interactions with the temperature and the W/mlactose ratio are detected. 12	
  

 13	
  

Table 7. Relative influence of the operating conditions on the gas composition 14	
  
according to the ANOVA analysis for the first hour of reaction 15	
  
	
  16	
  

Variable R2 I. Term T W C TW TC WC TWC T2 W2 C2 T2W T2C TW2 TC2 WC2 TWC2 

H2 
(vol.%) 0.99 62.8 13.29 ns ns ns -3.99 -4.66 2.84 -9.32 ns -3.75 ns 6.83 ns ns 5.73 -3.15 

 (31)    (7) (8) (5) (17)  (4)  (12)   (10) (6) 
CO2 
(vol.%) 0.99 29.69 -2.1 2.65 ns ns 4.63 2.11 -4.02 4.87 ns 1.64 -1.97 -3.58 -3.74 ns -2.89 4.88 

 (19) (2)   (12) (6) (11) (13)  (1) (5) (9) (5)  (4) (13) 
CO 
(vol.%) 0.99 6.25 -8.87 -6.29 ns -1.43 ns 2.53 1.25 4.75 1.96 ns 5.1 -3.24 ns 1.56 -2.3 Ns 

 (31) (13)  (5)  (8) (4) (14) (4)  (5) (10)  (3) (4)  
CH4 
(vol.%) 0.99 0.29 -0.35 ns 0.09 -0.16 -0.14 ns -0.04 Ns ns -0.08 ns -0.06 0.37 0.06 ns 0.13 

 (1)  (5) (12) (19)  (6)   (4)  (4) (21) (17)  (11) 

	
  17	
  
ns. Non significant with 95% confidence 18	
  

 19	
  
Response variable = Independent term + Coefficient T·T + Coefficient W·W + Coefficient C·C + Coefficient TW·TW + Coefficient 20	
  
TC·TC + Coefficient WC·WC + Coefficient TWC·TWC + Coefficient T2·T2 + Coefficient W2·W2 + Coefficient C2·C2 + Coefficient 21	
  
T2W·T2W + Coefficient T2C·T2C + Coefficient TW2·TW2 + Coefficient TC2·TC2 + Coefficient WC2·WC2 + Coefficient TWC2·TWC2 22	
  
	
  23	
  
 24	
  

The effects of the operating conditions on the composition of the gas obtained with the 25	
  

ANOVA analysis are plotted in Figures 6 and 7. Specifically, Figures 6 a and c show 26	
  

the effect of the temperature using a 1 wt.% lactose solution and W/mglycerol ratios of 4 27	
  

and 16 g catalyst min / g lactose on the concentrations of H2 and CO2. The influence of 28	
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the temperature and the W/mglycerol for a 10 wt.% lactose solution is shown in Figures 6 1	
  

b and d. Figure 7 plots these effects for the concentrations of CO and CH4 in the gas. 2	
  

The evolution of these variables was obtained from the ANOVA analysis (Table 7) of 3	
  

all the experiments performed (Table 4). In addition, when possible, some experimental 4	
  

points were added. 5	
  

 6	
  

3.2.2.1 H2 and CO2 7	
  

 8	
  

Figure 6. Interaction plots for initial relative amounts (vol.%) of H2 (a and b) and CO2 9	
  

(c and d) in the gas. Bars are LSD intervals with 95% confidence. 10	
  

 11	
  

Figure 6 shows how an increase in the temperature from 300 to 600 ºC increases the 12	
  

concentration of H2 in the gas regardless of the other operating variables and decreases 13	
  

the proportion of CO2 in some cases. This development in the proportion of H2, where 14	
  

an optimum takes place at 450-500 ºC, has also been reported in other works dealing 15	
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with steam reforming of other saccharides [31, 32] and is the consequence of the 1	
  

endothermic character of lactose steam reforming. The temperature exerts the greatest 2	
  

effect on the proportion of these two gases for a 1 wt.% lactose solution, while its effect 3	
  

is relatively weak as the concentration of lactose increases up to 10 wt.%. As an 4	
  

exception, the temperature does not exert a significant effect on the proportion of CO2 5	
  

for a 1 wt.% lactose solution using a W/mlactose ratio of 16 g catalyst min/ g lactose. This 6	
  

high W/mlactose ratio produces a concentration of CO2 close to that predicted 7	
  

thermodynamically over the whole temperature range. 8	
  

 9	
  

A comparison between Figures 6 a with b and c with d reveals that the proportion of H2 10	
  

in the gas increases between 300 and 450 ºC when increasing the lactose concentration 11	
  

from 1 to 10 wt.% and reduces the relative amount of CO2 in the gas for a W/mlactose 12	
  

ratio of 4 g catalyst min/g lactose. These developments account for the formation of C 13	
  

deposits that lower the amount of C in the gas as the concentration of lactose increases, 14	
  

thus increasing and decreasing the proportions of H2 and CO2, respectively, especially 15	
  

at low temperatures. An increase in temperature decreases the solid carbon formation 16	
  

allowing thermodynamic composition to be reached for the proportions of H2 and CO2. 17	
  

 18	
  

An increase in the W/mlactose ratio increases the proportion of H2 in the gas and reduces 19	
  

the concentration of CO2 between 300 and 500 ºC for a 1 wt.% lactose solution. Lactose 20	
  

steam reforming involves an initial thermal decomposition forming CO2, CO and other 21	
  

intermediate products that subsequently evolve towards the thermodynamic 22	
  

composition of the gas [32]. At low temperatures, decomposition reactions might 23	
  

prevail over reforming reactions, which results in a gas with a higher and lower 24	
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proportion of H2 and CO2, respectively, than those thermodynamically predicted. An 1	
  

increase in the temperature or in the W/mlactose ratio increases the reaction rates of the 2	
  

reforming reactions shifting the proportions of H2 and CO2 towards their 3	
  

thermodynamic value. For a 10 wt.% lactose solution the W/mlactose ratio exerts a 4	
  

negligible effect on the proportions of H2 and CO2. This is the consequence of the trade-5	
  

off between the gasification of the carbon deposits (which decreases and increases the 6	
  

proportions of H2 and CO2, respectively) and reforming reactions (which shift the 7	
  

proportion of H2 and CO2 towards their thermodynamic value). 8	
  

 9	
  

3.2.2.2 CO and CH4 10	
  

 11	
  

Figure 7. Interaction plots for initial relative amounts (vol.%) of CO (a and b) and CH4 12	
  

(c and d) in the gas. Bars are LSD intervals with 95% confidence. 13	
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Figure 7 shows how an increase in the temperature decreases the relative amount of CO 1	
  

in the gas. At low temperatures (300-450 ºC), lactose is thermally decomposed into a 2	
  

gas with a high proportion of CO and CO2 [31]. This high proportion of CO in the gas 3	
  

decreases towards its thermodynamic value when increasing the temperature. In 4	
  

general, an increase in the W/mlactose ratio from 4 to 16 g catalyst min/g lactose 5	
  

decreases the relative amount of CO in the gas due the greater spread of the water gas 6	
  

shift reaction.  7	
  

 8	
  

The effect of the lactose concentration on the relative amount of CO in the gas can be 9	
  

observed comparing Figure 7 a with b. An increase in the lactose concentration for a 10	
  

W/mlactose ratio of 4 g catalyst min/ g lactose decreases the proportion of CO in the gas, 11	
  

especially at temperatures higher than 450 ºC due to the low amount of C of the gas 12	
  

phase. Conversely, for a W/mlactose ratio of 16 g catalyst min/g lactose the effect of the 13	
  

concentration of lactose is not significant. At temperatures higher than 450 ºC, the 14	
  

reforming process is favoured and a thermodynamic concentration for the CO is 15	
  

obtained. At temperatures lower than 450 ºC there is a trade-off between the 16	
  

gasification of carbon deposits and the higher extension of the WGS reaction.  17	
  

 18	
  

The proportion of CH4 in the gas is lower than 0.5 vol.% in all cases. For a 1 wt.% 19	
  

lactose solution the concentration of CH4 increases with temperature regardless of the 20	
  

W/mlactose ratio. The proportion of C in the gas increases with temperature, which can 21	
  

increase the concentration of CH4. For a 10 wt.% lactose solution and employing 4 g 22	
  

catalyst min/g lactose, the temperature does not have a significant influence, while for a 23	
  

16 g catalyst min/g lactose the relative amount of CH4 drops as the temperature 24	
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increases. At temperatures higher than 450 ºC the evaporation of the feed and the 1	
  

reforming process are favoured but the thermodynamic proportion of CH4 decreases. A 2	
  

comparison between Figure 7 c and d shows how an increase in the concentration of 3	
  

lactose increases the proportion of CH4 in the gas between 300 and 500 ºC due to the 4	
  

thermodynamics. Between 450 and 600 ºC the same increase in the concentration of 5	
  

lactose causes a decrease in the concentration of CH4 in the gas.  6	
  

 7	
  

3.2.3 Liquid composition 8	
  

The liquid phase is made up of a mixture of aldehydes (acetaldehyde and propanal), 9	
  

ketones (2-propanone), carboxylic acids (acetic and propionic acids), sugars 10	
  

(levoglucosan and D-alose), furans (furfural, 2-furancarboxaldehyde and 2,5-11	
  

furandicarboxaldehyde), alcohols (ethanol, propanol and cyclic alcohols) and phenolic 12	
  

compounds (phenol and methyl-phenols). The presence of these compounds in the 13	
  

liquid phase, which is consistent with the reaction pathway proposed in Figure 1, is the 14	
  

result of the thermal decomposition of lactose and the incomplete reforming of lactose 15	
  

and its liquid intermediates. All these reaction intermediates have a high tendency to 16	
  

form coke (especially sugars, furans and aromatic species) [36, 52-55] which explains 17	
  

the formation of coke observed experimentally and the high proportion of CO and CO2 18	
  

in the gas under some experimental conditions. 19	
  

 20	
  

Figure 8 plots the relative amounts of each of the different families of liquid compounds 21	
  

for the different experiments represented in 3 intervals of 60 minutes, together with the 22	
  

results of the Fischer´s LSD test. The results from the statistical analysis (ANOVA) 23	
  

revealed significant differences in the concentrations of aldehydes, ketones, carboxylic 24	
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acids, sugars, furans, alcohols and phenols (p-values < 0.05). The proportion of these 1	
  

compounds in the liquid, expressed as relative chromatographic area, is as follows. 2	
  

Aldehydes: 0-100 %, ketones: 0-99%, carboxylic acids: 0-29%, furans: 0-99%, sugars: 3	
  

0-89%, alcohols: 0-9% and phenols: 0-4%. For the operating conditions where a 4	
  

negligible formation of liquid is achieved (high temperature and W/mlactose ratio), the 5	
  

liquid phase is made up of aldehydes and of a mixture of ketones and sugars when 6	
  

feeding a 1 and a 10 wt.% lactose solution, respectively. 7	
  

 8	
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 1	
  

Figure 8. Liquid composition results are presented as the relative chromatographic 2	
  

area divided into three intervals of 1 h for the different families of compounds and 3	
  

expressed as mean ± 0.5 Fisher LSD intervals with 95% confidence. 4	
  

 5	
  

 6	
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Studying the evolution over time for these compounds, two tendencies are found. 1	
  

Aldehydes, alcohols and phenols remain relatively steady, while high variations over 2	
  

time can be seen for ketones, carboxylic acids, sugars and furans. Aldehydes display a 3	
  

decrease in their relative area in run 4. The relative amount of phenols decreases for run 4	
  

3 and increases for runs 6, 14 and 18. Increases in the proportion of ketones are found 5	
  

for runs 2 and 6 while decreases take place for runs 5, 8, 13, 14, 17 and 19. Carboxylic 6	
  

acids display increases for runs 2, 6, 7, 14 and 22 and decreases for runs 1 and 17. The 7	
  

proportion of sugars increases for runs 1, 3, 4 and 19 and decreases for runs 2, 6 and 22. 8	
  

The relative amount of furans in the liquid increases for runs 6, 14, 17 and 22 and 9	
  

decreases for runs 1 and 3.  10	
  

 11	
  

To gain a better insight into the variations over time of these compounds, a multivariate 12	
  

analysis by means of Spearman´s test was conducted to find significant relationships 13	
  

between the proportions of these compounds in the liquid phase. This test reveals 14	
  

significant relationships with 95% confidence between the proportions of furans and 15	
  

carboxylic acids (p-value = 0.0001; R2 = 0.65); carboxylic acids and ketones (p-value = 16	
  

0.0001; R2 = 0.35); carboxylic acids and sugars (p-value = 0.0001; R2 = 0.65); furans 17	
  

and alcohols (p-value = 0.0001; R2 = 0.63); furans and sugars (p-value = 0.0001; R2 = 18	
  

0.36); alcohols and phenols (p-value = 0.0001; R2 = 0.46) and phenols and carboxylic 19	
  

acids (p-value = 0.0001; R2 = 0.56). These relationships account for the experimental 20	
  

observations and the reaction pathway shown in Figure 1. The test reveals that the 21	
  

increase in the proportion of sugars takes place together with decreases in the 22	
  

proportions of furans and ketones. 23	
  

 24	
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The specific effects of the operating conditions as well as their possible interactions on 1	
  

the liquid composition were studied considering the results obtained during the first 60 2	
  

minutes of reaction. Table 8 shows the significant terms in the codec model and their 3	
  

relative influence in the process according to the cause-effect Pareto test and the 4	
  

ANOVA analysis for the different families of compounds. Sugars, furans, aldehydes, 5	
  

ketones and carboxylic acids are the compounds displaying the highest variations in 6	
  

their proportions during the first hour of experiment, and consequently they are the most 7	
  

influenced by the operating conditions. Thus, only the influence of the operating 8	
  

conditions on the proportion of these families has been discussed in depth.   9	
  

 10	
  

Table 8. Relative influence of the operating conditions on the liquid composition 11	
  
according to the ANOVA analysis for the first hour of reaction. 12	
  
	
  13	
  

Variable R2 I. Term T W C TW TC WC TWC T2 W2 C2 T2W T2C TW2 TC2 WC2 TWC2 

Ketones 
(%) 0.98 39.11 31.87 -18.45 -16.92 16.4 ns ns ns 16.42 -24.13 -8.82 36.27 24.14 ns -33.7 -16.48 -13.72 

 (13) (3) (2) (7)    (1) (13) (9) (9) (9)  (18) (8) (6) 
C. Acids 
(%) 0.99 13.26 ns -1.69 -10.25 -6.52 ns ns ns -7.68 -7.07 9.81 -3 10.52 3.75 -6.14 3.18 6.56 

  (10) (7) (9)    (7) (10) (7) (4) (15) (1) (11) (5) (12) 
Furans 
(%) 0.99 24.44 -8.22 -10.78 10.43 -13.1 10.5 -3.24 ns -9.06 -5.91 ns 7.69 -20.12 ns -20.81 ns 15.07 

 (28) (6) (7) (4) (11) (3)  (2) (0.5)  (4) (9)  (14)  (9) 

Sugars 
(%) 0.99 7.81 -23.94 33.26 13.9 5.94 ns 15.07 7.07 Ns 35.45 -1.53 

-
41.31 ns -5.61 52.29 ns -23.03 

 (1) (2) (11) (8)  (11) (5)  (10) (2) (14)  (2) (24)  (10) 
Aldehydes 
(%) 0.99 -0.64 ns ns ns -2.39 -12.4 -12.6 -12.64 2.74 3.11 3.69 -2.38 -12.36 3.18 9.68 14.52 14.48 

    (9) (11) (11) (11) (4) (2) (7) (2) (11) (2) (12) (11) (8) 
Alcohols 
(%) 0.90 2.66 ns -2.3 1.06 ns -1.11 ns ns -1.29 ns -1.12 1.78 ns ns -1.84 ns 0.77 

  (13) (15)  (14)   (12)  (3) (10)   (23)  (10) 
Phenols 
(%) 0.98 1.32 ns ns 0.93 -0.48 0.4 -0.54 0.4 -0.61 -0.5 ns -0.42 -1.19 0.42 -0.92 0.79 ns 

   (1) (13) (9) (12) (9) (9) (3)  (3) (12) (6) (12) (10)  
ns. Non significant with 95% confidence 14	
  

 15	
  
Response variable = Independent term + Coefficient T·T + Coefficient W·W + Coefficient C·C + Coefficient TW·TW + Coefficient 16	
  
TC·TC + Coefficient WC·WC + Coefficient TWC·TWC + Coefficient T2·T2 + Coefficient W2·W2 + Coefficient C2·C2 + Coefficient 17	
  
T2W·T2W + Coefficient T2C·T2C + Coefficient TW2·TW2 + Coefficient TC2·TC2 + Coefficient WC2·WC2 + Coefficient TWC2·TWC2 18	
  
	
  19	
  
 20	
  

The relative influence of the operating conditions on the liquid composition summarised 21	
  

in Table 8 indicates that the temperature and the W/mlactose exert the greatest influence 22	
  

on the proportion of these liquids. Lactose decomposition is a competitive process 23	
  

involving competition between fragmentation and polymeric reactions. Therefore the 24	
  

operating conditions significantly influence the composition of the liquid phase [56].  25	
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  1	
  
Figure 9. Interaction plots for initial relative amounts (vol.%) of sugars (a and b), 2	
  

furans (c and d), aldehydes (e and f), ketones (g and h) and carboxylic acids (i and j). 3	
  

Bars are LSD intervals with 95% confidence. 4	
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 1	
  

The temperature, residence time and pH are the most influential parameters affecting 2	
  

product distribution during the thermal decomposition of carbohydrates [57]. Figure 9 3	
  

summarises the effect of the operating variables and the most important interactions on 4	
  

the liquid product distribution according to the ANOVA analysis. The evolution of 5	
  

these variables was obtained from the ANOVA analysis (Table 8) of all the experiments 6	
  

performed (Table 4). In addition, when possible, some experimental points were added. 7	
  

Some plots predict slightly negative relative areas due to the experimental character of 8	
  

the models.  Specifically, Figures 9 a, c, e, g and i show the effect of the temperature on 9	
  

the proportion of sugars, furans, aldehydes, ketones and carboxylic acids in the liquids 10	
  

for W/mlactose ratios of 4 and 16 g catalyst min/g lactose when a 1 wt.% lactose solution 11	
  

was used. These effects are plotted for a 10 wt.% lactose solution in Figures 9 b, d, f, h 12	
  

and j. 13	
  

 14	
  

3.2.3.1 Sugars 15	
  

The influence of the temperature on the proportion of sugars in the liquid depends on 16	
  

the W/mlactose ratio. For 4 g catalyst min/g lactose the temperature does not exert a 17	
  

significant effect between 300 and 400 ºC, where a liquid free of sugars is obtained. An 18	
  

increase in the temperature between 400 and 600 ºC dramatically increases the 19	
  

proportion of sugars as their formation is favoured at high temperatures [40]. 20	
  

Conversely, for a W/mlactose ratio of 16 g catalyst min/g lactose, a rise in the proportion 21	
  

of sugars takes place as the temperature increases from 300 to 450 ºC. A posterior drop 22	
  

follows this increase when the temperature is further increased up to 600 ºC. The 23	
  

increase in the W/mlactose ratio promotes the transformation of sugars into gases, thus 24	
  

reducing their proportion in the liquid phase.  25	
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 1	
  

The W/mlactose ratio exerts a significant influence on the proportion of sugars. Between 2	
  

300 and 450 ºC an increase in this ratio leads to an increase in the proportion of sugars 3	
  

in the liquid. Within this temperature range, an increment in the amount of catalyst 4	
  

helps to decrease the formation of carbon deposits, which increases the formation of 5	
  

liquid products. However, at temperatures of 450 ºC and beyond, where the reforming 6	
  

process is more favoured, this same increase leads to a decrease in the proportion of 7	
  

sugars for a 1 wt.% solution, probably due to their steam reforming to produce gases. 8	
  

This effect is not observed for a 10 wt.% solution, since the formation of sugars is more 9	
  

favoured when increasing the concentration of lactose in the feed.  10	
  

 11	
  

The effect of the lactose concentration on the proportion of sugars in the liquid depends 12	
  

on the W/mlactose ratio. For 4 g catalyst min/g lactose, the effect of the concentration is 13	
  

relatively small, while for 16 g catalyst min/g lactose an increase in the concentration of 14	
  

lactose in the feed greatly increases the relative amount of sugars in the liquid. A lower 15	
  

amount of water can help to shift the dehydration reactions of glucose and galactose 16	
  

towards the production sugars.  17	
  

 18	
  

3.2.3.2 Furans 19	
  

The highest proportion of furans in the liquid occurs at low temperatures, where their 20	
  

formation might be favoured. An increase in the temperature decreases their proportion 21	
  

in the liquid due to the greater extension of reforming reactions to produce gases. The 22	
  

effect of the W/mlactose ratio is only significant for a concentrated lactose solution (10 23	
  

wt.%). Under these conditions, an increase in the amount of catalyst reduces the relative 24	
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amount of furans in the liquid between 300 and 450 ºC. Within this temperature range, 1	
  

an increase in the W/mlactose ratio increases the CC gas, which increases the proportion 2	
  

of sugars, thus reducing the relative amount of furans in the liquid. Moreover, an 3	
  

increase in the W/mlactose ratio also aids the transformation of furans into phenolic 4	
  

compounds and gases, which accounts for the drop observed for this family and is in 5	
  

agreement with the reaction pathway proposed in Figure 1. The lactose concentration is 6	
  

only significant at temperatures between 300 and 400 ºC, where an increase from 1 to 7	
  

10 wt.% reduces the proportion of furans in the liquid. The increase observed in the 8	
  

proportion of sugars due to the lower excess of water accounts for this variation.  9	
  

 10	
  

3.2.3.3 Aldehydes 11	
  

The influence of the temperature on the proportion of aldehydes in the liquid depends 12	
  

on the concentration of lactose and the W/mlactose ratio. For a 1 wt.% lactose solution 13	
  

employing a W/mlactose ratio of 4 g catalyst min/g lactose, the temperature does not exert 14	
  

a significant effect on the proportion of aldehdydes in the liquid. For a ratio of 16 g 15	
  

catalyst min/g lactose, an increase in temperature increases the proportion of aldehydes. 16	
  

Acetalydehyde, obtained from the fragmentation of glucose and galactose, is the major 17	
  

constituent of this family. High temperatures favours linear aldehyde production [56], 18	
  

which is in agreement with the experimental results of this work. For a 10 wt.% solution 19	
  

the effect of the temperature and W/mlactose on the proportion of aldehydes is weak, and 20	
  

a proportion of aldehydes lower than 5% is obtained within the whole temperature range 21	
  

considered in this work.  22	
  

 23	
  

 24	
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3.2.3.4 Ketones 1	
  

The effect of the temperature on this family depends on the other two operating 2	
  

variables. When a 1 wt.% lactose solution and a W/mlactose ratio of 4 g catalyst min/g 3	
  

lactose are used, an increase in the temperature initially increases the proportion of 4	
  

ketones from 300 to 450 ºC, while a further increase up to 600 ºC reduces their relative 5	
  

amount. For a W/mlactose ratio of 16 g catalyst min/g lactose, the opposite trend with the 6	
  

temperature is observed. Low temperatures can favour the extension of retroaldolic 7	
  

reactions, increasing the proportion of ketones in the liquid. An increase in temperature 8	
  

might favour their transformation into other liquid intermediates and/or gases. For 16 g 9	
  

catalyst min/g lactose, the initial decrease in the proportion of ketones takes place 10	
  

together with an increase in the relative amounts of aldehydes and sugars, which might 11	
  

indicate a lower reactivity of ketones in steam reforming [36, 58, 59].  12	
  

 13	
  

For a 10 wt.% lactose solution the temperature does not exert a significant influence for 14	
  

a W/mlactose ratio of 4 g catalyst min/g lactose. However, an initial decrease in the 15	
  

proportion of ketones takes place for temperatures from 300 to 450 ºC followed by a 16	
  

posterior increase from 450 to 600 ºC when a W/mlactose ratio of 16 g catalyst min/g 17	
  

lactose is used. The higher formation of carbon deposits when feeding a concentrated 18	
  

lactose solution, which decreases the fraction of vaporised organic compounds, might 19	
  

hinder any increase in ketones with the temperature; thus the ketones follow the same 20	
  

trend as found for a 1 wt.% lactose solution. As the temperature increases and the CC 21	
  

sol decreases, the proportion of ketones reaches the same value as that for a 1 wt.% 22	
  

solution. 23	
  

 24	
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The effect of the concentration of lactose is found to be significant only between 400 1	
  

and 500 ºC for a W/mlactose ratio of 4 g catalyst min/g lactose.  Under these conditions an 2	
  

increase in the concentration of lactose decreases the relative amount of ketones in the 3	
  

liquid. Retroaldolic reactions might be favoured when high S/C and low W/mlactose ratios 4	
  

are used. A greater amount of catalyst might increase the reaction rates of the reforming 5	
  

reactions, thus increasing gas production.  6	
  

 7	
  

3.2.3.5 Carboxylic acids 8	
  

Carboxylic acids are intermediate products in lactose steam reforming.  They are 9	
  

obtained at low temperatures from the decomposition of glucose and galactose by 10	
  

fragmentation and retroaldol reactions [40]. They can be obtained from alcohol 11	
  

dehydration and aldehyde oxidation. The effect of the temperature depends on the 12	
  

concentration of lactose. For a 1 wt.% solution, an increase in their relative amount 13	
  

takes place between 300 and 450 ºC regardless of the W/mlactose ratio, reaching a 14	
  

maximum in the proportion of carboxylic acids at 450 ºC. Lactose decomposition 15	
  

through retroaldol and fragementation reactions might be favoured at this temperature 16	
  

range. A further increase in the temperature up to 600 ºC reduces the proportion of 17	
  

carboxylic acids, probably due to their transformation into other liquid products and/or 18	
  

gases. For a 10 wt.% lactose solution a mild decrease with temperature takes places. 19	
  

The W/mlactose ratio does not significantly influence the proportion of carboxylic acids, 20	
  

while the concentration of lactose exerts a significant influence decreasing the 21	
  

proportion of acids in the condensate as the lactose concentration increases from 1 to 10 22	
  

wt.%.  23	
  

 24	
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3.3 Theoretical prediction of optimal operating conditions and energetic assessment 1	
  

Optimal conditions for hydrogen production were sought making use of the 2	
  

experimental models developed for the optimisation and scaling-up of this valorisation 3	
  

process. The predicted R2 of all the models is higher than 0.90, allowing their use for 4	
  

prediction purposes. Three different optimisations were carried out. The first was the 5	
  

optimisation of the temperature for processing the highest amount of lactose, i.e. 6	
  

maximising the concentration of lactose in the feed. The second and the third aimed at 7	
  

optimising the process for the treatment of real cheese whey, fixing the concentration of 8	
  

lactose at 5.5 wt.% (the usual concentration of lactose in cheese whey) and maximising 9	
  

the CC gas and the proportion of H2 in the gas. In the second optimisation the 10	
  

temperature and the W/mlactose ratio were minimised, while no restrictions for these two 11	
  

variables were considered in the third optimisation. Additionally, the evolution over 12	
  

time of the CC gas and the proportion of H2 in the gas were minimised in all the 13	
  

optimisations. 14	
  

 15	
  

Table 9. Theoretical optimisation: Objectives, optimum values for the operating 16	
  
variables and optimised values for some responses 17	
  

	
  18	
  
Variable Optimisation 1 Optimisation 2 Optimisation 3 
 Objective Importance Optimum Objective Importance Optimum Objective Importance Optimum 
T (ºC) Minimum 1 559 Minimum 2 506 None 2 586 
[Lactose] (wt.%) Maximum 2 10 Fixed 2 5.5 Fixed 2 5.5 
W/mlactose (g cat min/g lactose) None 2 16 Minimum 1 15 None 1 16 
CC gas (%) Maximum 5 78 Maximum 5 72 Maximum 5 88 
CC liq (%) Minimum 3 2.5 Minimum 3 6 Minimum 3 0 
CC sol (%) Minimum 5 14 Minimum 5 18 Minimum 5 12 
H2 (vol.%) Maximum 4 65 Maximum 4 66 Maximum 4 67 
CO2 (vol.%) None 3 33 None 3 31 None 3 29 
CO (vol.%) None 3 0.2 None 3 0 None 3 0.7 
CH4 (vol.%) None 3 0.2 None 3 0.2 None 3 0.2 
Var CC gas (%) Minimum 2 13 Minimum 2 26 Minimum 2 8 
Var vol. H2 (%) Minimum 2 -5 Minimum 2 -6 Minimum 2 -2 
	
   19	
  

Var CC gas (%), Var vol. H2 (%): time variation percentage for the CC gas and relative amount of H2 in the gas (%), respectively. 20	
  
Positive and negative values indicate decreases and increases over time, respectively. 21	
  
Var CC gas (%) = 43.3+14.43·T-9.71·W-9.58·T·W-18.56·T2-14.56·W2  (R2 = 0.85) 22	
  
Var vol H2 (%) = 0.63-20.33·T-3.55·W-4.25·T·W+9.13·T·C+20.13·T2+3.12·W2+3.13·C2+4.25·T2·W-9.38·T2·C-2.29·T·C2-23	
  
10.38·W·C2+10.13·T·W·C2  (R2 =1) 24	
  
 25	
  
 26	
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To meet these objectives, a solution that strikes a compromise between the optimum 1	
  

values for all the response variables was sought. To do so, a relative importance (from 1 2	
  

to 5) was given to each of the objectives in order to come up with the solution that 3	
  

satisfies all the criteria. Table 9 lists the relative importance assigned to each variable, 4	
  

the criteria used in the optimisations and the optimisation results.  5	
  

 6	
  

A possible optimum for maximising the concentration of lactose in the feed was found 7	
  

at 559 ºC employing a W/mlactose ratio of 16 g catalyst min/g lactose (Opt. 1). These 8	
  

conditions provide a CC gas of 78% with a proportion of H2 in the gas of 65 vol.%. 9	
  

When feeding a lactose concentration of 5.5%, an optimum for H2 production takes 10	
  

place at 506 ºC using a W/mlactose ratio of 15 g catalyst min/g lactose (Opt. 2). These 11	
  

conditions provide a CC gas of 72% with a relative amount of H2 in the gas of 66 vol.%. 12	
  

The second optimisation predicts a lower temperature than that of the first due to the 13	
  

lower concentration of lactose. For maximising the CC gas and the relative amount of 14	
  

H2 in the gas (Opt. 3), the temperature must be increased up to 586 ºC. As a result a CC 15	
  

gas of 88% and a proportion of H2 in the gas of 67 vol.% can be obtained. This increase 16	
  

of 80 ºC reduces the CC liq from 6 to 0% and the CC sol from 18 to 12%. These 17	
  

conditions not only produce a H2 rich gas from cheese whey, but also provide a carbon-18	
  

free liquid product that can be discharged to the environment without any further 19	
  

treatment, thus helping to improve the economy and sustainability of the cheese 20	
  

manufacturing companies. 21	
  

 22	
  

An energy balance for the process was conducted for the third optimisation using Hysys 23	
  

8.4 simulation software with a PRSV thermodynamic package. The input energy, 24	
  

calculated as the sum of energy needed to heat the feed up to the reforming temperature 25	
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and the energy needed for the steam reforming reaction, is 3555 kJ/kg of solution. The 1	
  

theoretical output energy, calculated as the energy recovered from the gas as it is cooled 2	
  

from the reforming temperature to 25 ºC (assuming water in liquid state), is 3338 kJ/kg 3	
  

of solution. As a result, it is necessary to provide 217 kJ/kg of solution for the process. 4	
  

This energy can be theoretically generated by the combustion of 20% of the reforming 5	
  

gas with the stoichiometric amount of air (0.07 kg air/kg solution) and with the energy 6	
  

recovered from the gas as it is cooled from the adiabatic combustion temperature (1632 7	
  

ºC) to 25 ºC (assuming water in liquid state). Figure 10 shows a schematic diagram of 8	
  

this reforming-combustion process. Overall, with the combustion of 20% of the gas 9	
  

produced in the process, 68 % of the carbon present in the original feed can be 10	
  

transformed into a rich hydrogen gas (67 vol.%), with a global H2 yield of 16 mol 11	
  

H2/mol lactose in a neutral energy process.  12	
  

 13	
  

 14	
  

Figure 10. Schematic diagram of the reforming-combustion process 15	
  

 16	
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To study a more realistic case, it has been considered that 5% of the energy recovered in 1	
  

the coolers and produced by combustion is lost. In this case, considering an energy loss 2	
  

of 5% in the burner and the subsequent cooler, the combustion of 41% of the reforming 3	
  

gas would be required to provide the energy necessary for the process. The 4	
  

stoichiometric amount of air and the adiabatic combustion temperature are 0.13 kg 5	
  

air/kg solution and 1606 ºC, respectively. Taking these heat losses into account, an 6	
  

overall carbon conversion to gas of 52 % and a global H2 yield of 12.5 mol H2/mol 7	
  

lactose could be obtained from this valorisation-combustion process.  8	
  

 9	
  

This H2 yield is close to the theoretical maximum of the process (24 mol H2/mol 10	
  

lactose) and is higher than those obtained in anaerobic fermentation (4 mol H2/mol 11	
  

lactose) or anaerobic fermentation plus photo-fermentation with L-malic acid (2-10 mol 12	
  

H2/mol lactose). In addition, the energy calculations indicate that catalytic steam 13	
  

reforming is energetically feasible for energy and H2 production. 14	
  

 15	
  

4. Conclusions 16	
  

The catalytic steam reforming of lactose, the major organic constituent of cheese whey, 17	
  

has been evaluated both theoretically and experimentally in a fixed bed reactor using a 18	
  

Ni-based catalyst. The most important conclusions obtained from this preliminary study 19	
  

for the valorisation of this waste stream obtained during the cheese making process are 20	
  

summarised as follows. 21	
  

1. This process enables the lactose present in cheese whey effluents to be transformed 22	
  

into a rich H2 gas, reducing the amount of carbon present in the liquid effluent and 23	
  

resulting in an almost carbon-free liquid stream under certain operating conditions. 24	
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2. The temperature and the concentration of lactose are the factors with the highest 1	
  

influence on the thermodynamics of lactose steam reforming. A thermodynamic 2	
  

optimum for H2 production is found to be at a temperature between 430 and 570 ºC for 3	
  

the whole range of lactose concentrations considered in this work (1-10 wt.%).  4	
  

3. The temperature, lactose concentration and W/mlactose ratio have a statistically 5	
  

significant influence on the carbon conversions to gas, solid and liquid products as well 6	
  

as on the composition of the gas and liquid phases. An increase in the temperature 7	
  

augments the CC gas, due to the endothermic nature of the reforming process. In 8	
  

addition, the temperature enhances the vaporisation of the feed and promotes the 9	
  

gasification of the carbonaceous deposits derived from an incomplete vaporisation. 10	
  

4. The gas phase was made up of a mixture of H2 (10-68 vol.%), CO2 (24-63 vol.%), 11	
  

CO (1-28 vol.%) and CH4 (0-1 vol.%). The temperature is the operating variable with 12	
  

the greatest influence on the composition of the gas. An increase in the reforming 13	
  

temperature increases the proportion of H2 and reduces the concentration of CO in the 14	
  

gas. An increase in the W/mlactose ratio favours the reforming and the water gas shift 15	
  

reactions. The effect of the concentration of lactose on the composition of the gas phase 16	
  

depends on the temperature and W/mlactose ratio due to the coexistence and competition 17	
  

of kinetic (vaporisation and reforming reaction rates) and thermodynamic effects.  18	
  

5. The liquid phase is made up of a mixture of aldehydes, ketones, carboxylic acids, 19	
  

sugars, furans, alcohols and phenols derived from the thermal decomposition of lactose. 20	
  

This thermal decomposition involves competition between fragmentation and 21	
  

condensation reactions. 22	
  

6. The maximum CC gas (88%) together with the highest proportion of H2 (67 vol.%) in 23	
  

the gas, along with a carbon-free liquid stream when feeding a 5.5 wt.% lactose solution 24	
  

(typical of cheese whey), are achieved using a reforming temperature of 586 ºC and 25	
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employing a W/mlactose ratio of 16 g catalyst min/g lactose. The combustion of 20% of 1	
  

this reforming gas provides the energy necessary for the process. Considering the global 2	
  

process (reforming and combustion) a rich hydrogen gas with a global H2 yield of 16 3	
  

mol H2/mol lactose can be obtained. If heat losses are considered, the proportion of the 4	
  

reforming gas needed for combustion increases up to 40%, and the global H2 yield 5	
  

decreases up to a value of 12.5 mol H2/mol lactose. 6	
  

 7	
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