21 research outputs found

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    HSV Delivery of a Ligand-regulated Endogenous Ion Channel Gene to Sensory Neurons Results in Pain Control Following Channel Activation

    No full text
    Persistent pain remains a tremendous health problem due to both its prevalence and dearth of effective therapeutic interventions. To maximize pain relief while minimizing side effects, current gene therapy–based approaches have mostly exploited the expression of pain inhibitory products or interfered with pronociceptive ion channels. These methods do not enable control over the timing or duration of analgesia, nor titration to analgesic efficacy. Here, we describe a gene therapy strategy that potentially overcomes these limitations by providing exquisite control over therapy with efficacy in clinically relevant models of inflammatory pain. We utilize a herpes simplex viral (HSV) vector (vHGlyRα1) to express a ligand-regulated chloride ion channel, the glycine receptor (GlyR) in targeted sensory afferents; the subsequent exogenous addition of glycine provides the means for temporal and spatial control of afferent activity, and therefore pain. Use of an endogenous inhibitory receptor not normally present on sensory neurons both minimizes immunogenicity and maximizes therapeutic selectivity

    Transgene-mediated expression of tumor necrosis factor soluble receptor attenuates morphine tolerance in rats

    No full text
    Opiate/narcotic analgesics are the most effective treatments for chronic severe pain, but their clinical utility is often hampered by the development of analgesic tolerance. Recent evidence suggests chronic morphine may activate glial cells to release proinflammatory cytokines. In this study, we used herpes simplex virus (HSV) vectors-based gene transfer to dorsal root ganglion to produce a local release of p55 TNF soluble receptor in the spinal cord in rats with morphine tolerance. Subcutaneous inoculation of HSV vectors expressing p55 TNF soluble receptor into the plantar surface of the hindpaws, enhanced the antinociceptive effect of acute morphine in rats. Subcutaneous inoculation of those vectors into hindpaws also delayed the development of chronic morphine tolerance in rats. TNF soluble receptor expressed by HSV vector reduced gene transcription of mRNA of spinal TNFα and IL-1β induced by repeated morphine. Furthermore, we found that TNF soluble receptor mediated by HSV, reversed the upregulation of TNFα, IL-1β and phosphorylation of p38 mitogen-activated protein kinase (MAPK) induced by repeated morphine. These results support the concept that proinflammatory cytokines may play an important role in the pathogenesis induced by morphine. This study provides a novel approach to treating morphine tolerance
    corecore