12 research outputs found

    MicroRNAs Dynamically Remodel Gastrointestinal Smooth Muscle Cells

    Get PDF
    Smooth muscle cells (SMCs) express a unique set of microRNAs (miRNAs) which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI) SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM) layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF), and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract

    PDGF-CC induces tissue factor expression: role of PDGF receptor alpha/beta

    Full text link
    Tissue factor (TF) is the principal trigger of the coagulation cascade and involved in arterial thrombus formation. Platelet-derived growth factor CC (PDGF-CC) is a recently discovered member of the PDGF family released upon platelet activation. This study assesses the impact of PDGF-CC on TF expression in human cells. PDGF-CC concentration-dependently induced TF expression by 2.5-fold in THP-1 cells, by 2.0-fold in human peripheral blood monocytes, by 1.4-fold in vascular smooth muscle cells, and by 2.6-fold in microvascular endothelial cells, but did not affect TF expression in aortic endothelial cells. A similar pattern was observed with PDGF-BB. In contrast, PDGF-AA did not alter TF expression in THP-1 cells. TF whole cell activity was induced following stimulation with PDGF-BB and PDGF-CC in THP-1 cells. Real-time polymerase chain reaction revealed that PDGF-CC induced TF mRNA. PDGF-CC transiently activated p42/44 MAP kinase [extracellular signal-regulated kinase (ERK)], while phosphorylation of the MAP kinases c-Jun NH(2)-terminal kinase (JNK) and p38 remained unaffected. PD98059, a specific inhibitor of ERK phosphorylation, but not the p38 inhibitor SB203580 or the JNK inhibitor SP600125 prevented PDGF-CC induced TF expression in a concentration-dependent manner. The effect of PDGF-CC was antagonized by both PDGF receptor alpha and PDGF receptor beta neutralizing antibodies; in contrast, PDGF-BB was only inhibited by PDGF receptor beta blocking antibody. PDGF receptor alpha and PDGF receptor beta inhibition prevented PDGF-CC-induced ERK phosphorylation. PDGF-CC induces TF expression via activation of alpha/beta receptor heterodimers and an ERK-dependent signal transduction pathway

    Guiding Charge Transport in Semiconducting Carbon Nanotube Networks by Local Optical Switching

    No full text
    Photoswitchable, ambipolar field-effect transistors (FETs) are fabricated with dense networks of polymer-sorted, semiconducting single-walled carbon nanotubes (SWCNTs) in top-gate geometry with photochromic molecules mixed in the polymer matrix of the gate dielectric. Both hole and electron transport are strongly affected by the presence of spiropyran and its photoisomer merocyanine. A strong and persistent reduction of charge carrier mobilities and thus drain currents upon UV illumination (photoisomerization) and its recovery by annealing give these SWCNT transistors the basic properties of optical memory devices. Temperature-dependent mobility measurements and density functional theory calculations indicate scattering of charge carriers by the large dipoles of the merocyanine molecules and electron trapping by protonated merocyanine as the underlying mechanism. The direct dependence of carrier mobility on UV exposure is employed to pattern high- and low-resistance areas within the FET channel and thus to guide charge transport through the nanotube network along predefined paths with micrometer resolution. Near-infrared electroluminescence imaging enables the direct visualization of such patterned current pathways with good contrast. Elaborate mobility and thus current density patterns can be created by local optical switching, visualized and erased again by reverse isomerization through heating

    Fazit

    No full text

    Severe Intestinal Obstruction on Induced Smooth Muscle–Specific Ablation of the Transcription Factor SRF in Adult Mice

    No full text
    Angstenberger M, Wegener J, Pichler BJ, et al. Severe Intestinal Obstruction on Induced Smooth Muscle–Specific Ablation of the Transcription Factor SRF in Adult Mice. Gastroenterology. 2007;133(6):1948-1959.Background & Aims: SRF (Serum Response Factor), a widely expressed transcription factor, controls expression of mitogen-responsive and muscle-specific genes, thereby regulating the contractile actin microfilament. Genetic Srf deletion studies showed SRF to be indispensable for in vivo skeletal and cardiac muscle cell development. We now investigated for the first time in vivo SRF functions in smooth muscle cells of adult mice. Methods: We conditionally deleted a floxed Srf allele (Srfflex1) in adult mice by inducible activation of the CreERT2 recombinase expressed specifically in smooth muscle cells. Tamoxifen-induced CreERT2 activity stimulated deletion of exon 1 coding sequences of Srfflex1, thereby abolishing full-length SRF protein expression in adult smooth muscle cells of the analyzed organs: colon, bladder, and stomach. Results: Smooth muscle cell–specific ablation of full-length SRF protein in adult mice showed impaired contraction of intestinal smooth muscle, resulting in defective peristalsis. Mutant mice died within 2 weeks of tamoxifen treatment, displaying clear symptoms of ileus paralyticus. Cultured primary SRF-deficient colon smooth muscle cells were viable, but displayed drastic structural alterations and elevated senescence, paralleled by degeneration of the actin microfilament and impaired expression of smooth muscle–specific genes. Conclusions: SRF plays a vital role in the contractile activity and cytoskeletal architecture of adult smooth muscle cells and is therefore essential for physiologic functions of the gastrointestinal tract in vivo. Our mouse genetic model may resemble features of human chronic intestinal pseudo-obstruction
    corecore