13,490 research outputs found
Lorentz Violation and Synchrotron Radiation
We consider the radiation emitted by an ultrarelativistic charged particle
moving in a magnetic field, in the presence of an additional Lorentz-violating
interaction. In contrast with prior work, we treat a form of Lorentz violation
that is represented by a renormalizable operator. Neglecting the radiative
reaction force, the particle's trajectory can be determined exactly. The
resulting orbit is generally noncircular and does not lie in the place
perpendicular to the magnetic field. We do not consider any Lorentz violation
in the electromagnetic sector, so the radiation from the accelerated charge can
be determined by standard means, and the radiation spectrum will exhibit a
Lorentz-violating directional dependence. Using data on emission from the Crab
nebula, we can set a bound on a particular combination of Lorentz-violating
coefficients at the level.Comment: 14 page
Asymptotically Universal Crossover in Perturbation Theory with a Field Cutoff
We discuss the crossover between the small and large field cutoff (denoted
x_{max}) limits of the perturbative coefficients for a simple integral and the
anharmonic oscillator. We show that in the limit where the order k of the
perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the
crossover region, a_k(x_{max}) is proportional to the integral from -infinity
to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are
determined empirically and compared with exact (for the integral) and
approximate (for the anharmonic oscillator) calculations. We discuss how this
approach could be relevant for the question of interpolation between
renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304
Back-translation for discovering distant protein homologies
Frameshift mutations in protein-coding DNA sequences produce a drastic change
in the resulting protein sequence, which prevents classic protein alignment
methods from revealing the proteins' common origin. Moreover, when a large
number of substitutions are additionally involved in the divergence, the
homology detection becomes difficult even at the DNA level. To cope with this
situation, we propose a novel method to infer distant homology relations of two
proteins, that accounts for frameshift and point mutations that may have
affected the coding sequences. We design a dynamic programming alignment
algorithm over memory-efficient graph representations of the complete set of
putative DNA sequences of each protein, with the goal of determining the two
putative DNA sequences which have the best scoring alignment under a powerful
scoring system designed to reflect the most probable evolutionary process. This
allows us to uncover evolutionary information that is not captured by
traditional alignment methods, which is confirmed by biologically significant
examples.Comment: The 9th International Workshop in Algorithms in Bioinformatics
(WABI), Philadelphia : \'Etats-Unis d'Am\'erique (2009
Synchrotron and Inverse Compton Constraints on Lorentz Violations for Electrons
We present a method for constraining Lorentz violation in the electron
sector, based on observations of the photons emitted by high-energy
astrophysical sources. The most important Lorentz-violating operators at the
relevant energies are parameterized by a tensor c^{nu mu) with nine independent
components. If c is nonvanishing, then there may be either a maximum electron
velocity less than the speed of light or a maximum energy for subluminal
electrons; both these quantities will generally depend on the direction of an
electron's motion. From synchrotron radiation, we may infer a lower bound on
the maximum velocity, and from inverse Compton emission, a lower bound on the
maximum subluminal energy. With observational data for both these types of
emission from multiple celestial sources, we may then place bounds on all nine
of the coefficients that make up c. The most stringent bound, on a certain
combination of the coefficients, is at the 6 x 10^(-20) level, and bounds on
the coefficients individually range from the 7 x 10^(-15) level to the 2 x
10^(-17) level. For most of the coefficients, these are the most precise bounds
available, and with newly available data, we can already improve over previous
bounds obtained by the same methods.Comment: 28 page
Velocity in Lorentz-Violating Fermion Theories
We consider the role of the velocity in Lorentz-violating fermionic quantum
theory, especially emphasizing the nonrelativistic regime. Information about
the velocity will be important for the kinematical analysis of scattering and
other problems. Working within the minimal standard model extension, we derive
new expressions for the velocity. We find that generic momentum and spin
eigenstates may not have well-defined velocities. We also demonstrate how
several different techniques may be used to shed light on different aspects of
the problem. A relativistic operator analysis allows us to study the behavior
of the Lorentz-violating Zitterbewegung. Alternatively, by studying the time
evolution of Gaussian wave packets, we find that there are Lorentz-violating
modifications to the wave packet spreading and the spin structure of the wave
function.Comment: 24 page
Correction, improvement and model verification of CARE 3, version 3
An independent verification of the CARE 3 mathematical model and computer code was conducted and reported in NASA Contractor Report 166096, Review and Verification of CARE 3 Mathematical Model and Code: Interim Report. The study uncovered some implementation errors that were corrected and are reported in this document. The corrected CARE 3 program is called version 4. Thus the document, correction. improvement, and model verification of CARE 3, version 3 was written in April 1984. It is being published now as it has been determined to contain a more accurate representation of CARE 3 than the preceding document of April 1983. This edition supercedes NASA-CR-166122 entitled, 'Correction and Improvement of CARE 3,' version 3, April 1983
Consistency analysis of a nonbirefringent Lorentz-violating planar model
In this work analyze the physical consistency of a nonbirefringent
Lorentz-violating planar model via the analysis of the pole structure of its
Feynman propagators. The nonbirefringent planar model, obtained from the
dimensional reduction of the CPT-even gauge sector of the standard model
extension, is composed of a gauge and a scalar fields, being affected by
Lorentz-violating (LIV) coefficients encoded in the symmetric tensor
. The propagator of the gauge field is explicitly evaluated
and expressed in terms of linear independent symmetric tensors, presenting only
one physical mode. The same holds for the scalar propagator. A consistency
analysis is performed based on the poles of the propagators. The isotropic
parity-even sector is stable, causal and unitary mode for .
On the other hand, the anisotropic sector is stable and unitary but in general
noncausal. Finally, it is shown that this planar model interacting with a
Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio
Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies
Existing sequence alignment algorithms use heuristic scoring schemes which
cannot be used as objective distance metrics. Therefore one relies on measures
like the p- or log-det distances, or makes explicit, and often simplistic,
assumptions about sequence evolution. Information theory provides an
alternative, in the form of mutual information (MI) which is, in principle, an
objective and model independent similarity measure. MI can be estimated by
concatenating and zipping sequences, yielding thereby the "normalized
compression distance". So far this has produced promising results, but with
uncontrolled errors. We describe a simple approach to get robust estimates of
MI from global pairwise alignments. Using standard alignment algorithms, this
gives for animal mitochondrial DNA estimates that are strikingly close to
estimates obtained from the alignment free methods mentioned above. Our main
result uses algorithmic (Kolmogorov) information theory, but we show that
similar results can also be obtained from Shannon theory. Due to the fact that
it is not additive, normalized compression distance is not an optimal metric
for phylogenetics, but we propose a simple modification that overcomes the
issue of additivity. We test several versions of our MI based distance measures
on a large number of randomly chosen quartets and demonstrate that they all
perform better than traditional measures like the Kimura or log-det (resp.
paralinear) distances. Even a simplified version based on single letter Shannon
entropies, which can be easily incorporated in existing software packages, gave
superior results throughout the entire animal kingdom. But we see the main
virtue of our approach in a more general way. For example, it can also help to
judge the relative merits of different alignment algorithms, by estimating the
significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia
Simplified amino acid alphabets based on deviation of conditional probability from random background
The primitive data for deducing the Miyazawa-Jernigan contact energy or
BLOSUM score matrix consists of pair frequency counts. Each amino acid
corresponds to a conditional probability distribution. Based on the deviation
of such conditional probability from random background, a scheme for reduction
of amino acid alphabet is proposed. It is observed that evident discrepancy
exists between reduced alphabets obtained from raw data of the
Miyazawa-Jernigan's and BLOSUM's residue pair counts. Taking homologous
sequence database SCOP40 as a test set, we detect homology with the obtained
coarse-grained substitution matrices. It is verified that the reduced alphabets
obtained well preserve information contained in the original 20-letter
alphabet.Comment: 9 pages,3figure
T and CPT Symmetries in Entangled Neutral Meson Systems
Genuine tests of an asymmetry under T and/or CPT transformations imply the
interchange between in-states and out-states. I explain a methodology to
perform model-indepedent separate measurements of the three CP, T and CPT
symmetry violations for transitions involving the decay of the neutral meson
systems in B- and {\Phi}-factories. It makes use of the quantum-mechanical
entanglement only, for which the individual state of each neutral meson is not
defined before the decay of its orthogonal partner. The final proof of the
independence of the three asymmetries is that no other theoretical ingredient
is involved and that the event sample corresponding to each case is different
from the other two. The experimental analysis for the measurements of these
three asymmetries as function of the time interval {\Delta}t > 0 between the
first and second decays is discussed, as well as the significance of the
expected results. In particular, one may advance a first observation of true,
direct, evidence of Time-Reserval-Violation in B-factories by many standard
deviations from zero, without any reference to, and independent of,
CP-Violation. In some quantum gravity framework the CPT-transformation is
ill-defined, so there is a resulting loss of particle-antiparticle identity.
This mechanism induces a breaking of the EPR correlation in the entanglement
imposed by Bose statistics to the neutral meson system, the so-called
{\omega}-effect. I present results and prospects for the {\omega}-parameter in
the correlated neutral meson-antimeson states.Comment: Proc. DISCRETE 2010, Symposium on Prospects in the Physics of
Discrete Symmetries, December 2010, Rom
- …
