We discuss the crossover between the small and large field cutoff (denoted
x_{max}) limits of the perturbative coefficients for a simple integral and the
anharmonic oscillator. We show that in the limit where the order k of the
perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the
crossover region, a_k(x_{max}) is proportional to the integral from -infinity
to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are
determined empirically and compared with exact (for the integral) and
approximate (for the anharmonic oscillator) calculations. We discuss how this
approach could be relevant for the question of interpolation between
renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304