67,302 research outputs found
Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes
By Monte Carlo simulations, we study the character of the spinglass (SG) phase in dense disordered packings of magnetic nanoparticles (NPs). We focus on NPs which have large uniaxial anisotropies and can be well represented as Ising dipoles. Dipoles are placed on SC lattices and point along randomly oriented axes. From the behaviour of a SG correlation length we determine the transition temperature Tc between the paramagnetic and a SG phase. For temperatures well below Tc we find distributions of the SG overlap parameter q that are strongly sample-dependent and exhibit several spikes. We find that the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with the system sizes studied. We compare these results with the ones found previously for 3D site-diluted systems of parallel Ising dipoles and with the behaviour of the Sherrington-Kirkpatrick model.We thank financial support from MINECO FIS2013-43201-P Gran
Environmental Law: A Reevaluation of Federal Pre-Emption and the Commerce Clause
This Comment addresses how the concern of state and local governments to regain control over environmental regulation has resulted in a marked increase in conflicts with the commerce and supremacy clauses of the Constitution. Various tests have been used by the courts to determine violations of these Constitutional provisions where environmental objectives are sought through local laws. In the field of environmental litigation, traditional tests are constantly challenged to meet the changing moral climate of the nation. This Comment weighs the desire of local legislatures for more responsive environmental regulation against the federal goal of uniform regulation and unrestrained interstate commerce, concluding that the court must decide on a policy of pre-emption in order for the nation to know whether environmental reform will be spearheaded from the states or the federal government
Monte Carlo study of the spin-glass phase of the site-diluted dipolar Ising model
By tempered Monte Carlo simulations, we study site-diluted Ising systems of
magnetic dipoles. All dipoles are randomly placed on a fraction x of all L^3
sites of a simple cubic lattice, and point along a given crystalline axis. For
x_c< x<=1, where x_c = 0.65, we find an antiferromagnetic phase below a
temperature which vanishes as x tends to x_c from above. At lower values of x,
we find an equilibrium spin-glass (SG) phase below a temperature given by k_B
T_{sg} = x e_d, where e_d is a nearest neighbor dipole-dipole interaction
energy. We study (a) the relative mean square deviation D_q^2 of |q|, where q
is the SG overlap parameter, and (b) xi_L/L, where xi_L is a correlation
length. From their variation with temperature and system size, we determine
T_{sg}. In the SG phase, we find (i) the mean values and decrease
algebraically with L as L increases, (ii) double peaked, but wide,
distributions of q/ appear to be independent of L, and (iii) xi_L/L rises
with L at constant T, but extrapolations to 1/L -> 0 give finite values. All of
this is consistent with quasi-long-range order in the SG phase.Comment: 15 LaTeX pages, 15 figures, 3 tables. (typos fixed in Appendix A
Efficient model chemistries for peptides. I. Split-valence Gaussian basis sets and the heterolevel approximation in RHF and MP2
We present an exhaustive study of more than 250 ab initio potential energy
surfaces (PESs) of the model dipeptide HCO-L-Ala-NH2. The model chemistries
(MCs) used are constructed as homo- and heterolevels involving possibly
different RHF and MP2 calculations for the geometry and the energy. The basis
sets used belong to a sample of 39 selected representants from Pople's
split-valence families, ranging from the small 3-21G to the large
6-311++G(2df,2pd). The reference PES to which the rest are compared is the
MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the more
accurate PES of a dipeptide in the literature. The aim of the study presented
is twofold: On the one hand, the evaluation of the influence of polarization
and diffuse functions in the basis set, distinguishing between those placed at
1st-row atoms and those placed at hydrogens, as well as the effect of different
contraction and valence splitting schemes. On the other hand, the investigation
of the heterolevel assumption, which is defined here to be that which states
that heterolevel MCs are more efficient than homolevel MCs. The heterolevel
approximation is very commonly used in the literature, but it is seldom
checked. As far as we know, the only tests for peptides or related systems,
have been performed using a small number of conformers, and this is the first
time that this potentially very economical approximation is tested in full
PESs. In order to achieve these goals, all data sets have been compared and
analyzed in a way which captures the nearness concept in the space of MCs.Comment: 54 pages, 16 figures, LaTeX, AMSTeX, Submitted to J. Comp. Che
Reply to Comment on "Magnetization Process of Single Molecule Magnets at Low Temperatures"
This is the reply to a Comment by I.S.Tupitsyn and P.C.E. Stamp (PRL
v92,119701 (2004)) on a letter of ours (J.F.Fernandez and J.J.Alonso, PRL v91,
047202 (2003)).Comment: 2 LaTeX pages, 1 eps figure. Submitted to PRL on 20 October 200
- …
