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By tempered Monte Carlo simulations, we study site-diluted Ising systems of magnetic dipoles. All dipoles
are randomly placed on a fraction x of all L3 sites of a simple cubic lattice, and point along a given crystalline
axis. For xc�x�1, where xc�0.65, we find an antiferromagnetic phase below a temperature which vanishes
as x→xc from above. At lower values of x, we find an equilibrium spin-glass �SG� phase below a temperature
given by kBTsg�x�d, where �d is a nearest-neighbor dipole-dipole interaction energy. We study �a� the relative
mean-square deviation �q

2 of �q�, where q is the SG overlap parameter and �b� �L /L, where �L is a correlation
length. From their variation with temperature and system size, we determine Tsg. In the SG phase, we find �i�
the mean values ��q�� and �q2� decrease algebraically with L as L increases, �ii� double peaked, but wide,
distributions of q / ��q�� appear to be independent of L, and �iii� �L /L rises with L at constant T but extrapola-
tions to 1 /L→0 give finite values. All of this is consistent with quasilong-range order in the SG phase.
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I. INTRODUCTION

The collective behavior of spin systems in which mag-
netic dipole-dipole interactions dominate has become the
subject of considerable attention. These systems are rare in
nature, although some ferroelectrics,1 and magnetic crystals
such as LiHoF4, an insulating magnetic salt, have been
known for decades to be well described by models of mag-
netic dipoles.2–4 Much of the renewed interest in systems of
interacting dipoles comes from the experimental realization
of magnetic nanoparticle5 arrays6,7 and of crystals of organo-
metallic molecules.8 In these systems, particles up to some
thousand Bohr magnetons behave as single spins. When
closely packed in crystalline arrangements, dipolar interac-
tions between them may induce magnetic ordering.7,9

Anisotropy also plays an important role in ordering dipo-
lar systems. The barrier energies Ea that must be overcome
by spins in order to reverse their direction are often some-
what larger than the relevant dipolar energies Ed. Then, col-
lective effects can be observed when thermal energies are not
sufficiently large to completely freeze spins directions. Their
main effect is then to force spins to point up or down along
the easy magnetization axis.10 Crystalline Ising dipolar sys-
tems �IDSs� are then reasonable models.2 These systems are
clearly frustrated since two different dipoles give rise to
magnetic fields at any given site that are not in general col-
linear. Not surprisingly, IDSs are very sensitive to their spa-
tial arrangement. Early work by Luttinger and Tisza estab-
lished which type of magnetic order arises at low
temperature for IDSs in each of the cubic lattices.11 More
recently, we have obtained similar results by much simpler
methods.12 For instance, BCC-like and LiHoF4-like crystals
are ferromagnetic ordered but antiferromagnetic �AF� order
obtains on simple cubic �SC� lattices. Competition between
different interactions brings about a more exotic magnetic
order, known as “spin ice,”13 in diamond crystals.

Whether disorder in IDSs, together with the geometric
frustration that comes with the dipolar interactions give rise
to a thermodynamic spin-glass �SG� phase, is an interesting

question.14 Many experiments15 as well as numerical
simulations16 have shown that assemblies of classical mag-
netic moments placed at random, such as in frozen ferroflu-
ids and diluted ferroelectric materials, exhibit the time-
dependent behavior, such as nonexponential relaxation and
aging,17 that is expected from SGs. However, search for evi-
dence for the existence of an equilibrium SG phase has been
hampered by the extremely slow relaxation that is inherent to
these systems. In recent papers, we have given numerical
evidence that supports the existence of an equilibrium SG
phase in IDSs with randomly oriented axes both in fully
occupied18 and in partially occupied SC lattices.19

Site dilution is a rather simple way to introduce disorder
in experimental realizations of IDS. Some early attempts to
find a SG phase in EuxSr1−xS led to negative results.20 By far
the most scrutinized system for the last two decades has been
LiHoxY1−xF4. In it, magnetic Ho3+ ions are substituted, with
little distortion, by nonmagnetic Y3+ ions.3 A strong uniaxial
anisotropy forces all spins to point up or down along the
same axis at low temperatures. This parallel-axis-dipolar
�PAD� system orders ferromagnetically a low-temperature
phase above xc�0.25. Below xc, transitions from a paramag-
netic to a SG phase have been reported,21–23 but the opposite
conclusion, that no such transition takes place, has been
reached in Ref. 24. The issue is further obscured by quantum
effects that may take place at x�1.25

Theoretical results suggest that diluted PAD models un-
dergo a SG transition at low concentrations. An earlier study
of bond-diluted Ising systems with long-range interactions
�including the dipolar case� found that SG order may exist at
low temperatures in the limit of weak concentration.26 Mean-
field calculations for site-diluted PAD systems in FCC and
BCC lattices predicted a SG phase for concentrations 0�x
�xc where xc is the value above which ferromagnetic order
ensues.27 More recently, Edwards-Anderson- �EA-� type28

models with power-law decaying interactions Jij �1 /rij
� have

been studied.29,30 A one-dimensional Ising spin-glass model
has been found to have a nonzero temperature SG phase
transition for ��1.30 A three-dimensional �3D� Ising system
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with Ruderman-Kittel-Kasuya-Yosida interactions �that de-
cay with 1 /rij

3 � have been predicted to lie in the same uni-
versality class as the 3D Ising Edwards-Anderson model
with short-range interactions.29

Numerical methods have provided conflicting answers to
the question of the existence of a SG phase in site-diluted
PAD models. Biltmo and Henelius31 have calculated that the
ferromagnetic phase of LiHoxY1−xF4 extends down to xc
�0.24 but found no SG phase at low temperatures for x
�xc.

31 This is in contradiction with another Monte Carlo
�MC� simulation for the same system that finds a SG transi-
tion for concentrations x=0.065 and 0.125.32 Numerical
work has also been done on a PAD model on a SC lattice,
using a Wang-Landau MC method.33 No transition was
found for x�0.2.

Here we also simulate a PAD model on a SC lattice. Our
justification for working with a SC lattice is as follows.
Whereas such systems order AF in fully occupied SC
lattices,11,12 instead of ferromagnetically, as in the LiHoY4
lattice, the physics of PAD systems is not expected to depend
on lattice structure for x�1. A continuum should then lead to
the same behavior. Furthermore, rescaling distance r as r
→r /�1/3, where � is the spatial density of spins, is no differ-
ent from redefining dipolar energies by �d→��d, since dipo-
lar interactions decay as r−3. Now, consider kBTsg /nd�d for
any lattice structure, where kB is Boltzmann’s constant, Tsg is
the SG transition temperature, nd is the number of magnetic
dipoles within a d3 volume, and �d is the smallest possible
dipolar energy two parallel dipoles that are a distance d apart
can have. Clearly, kBTsg /nd�d must be independent of lattice

structure for x�1. This enables us to compare results for SC
and LiHoF4 lattices, or any other lattice, for x�1. Such a
comparison is made in Table I.

The main aim of this paper is to find, by means of MC
simulations, whether an equilibrium SG phase exists in site-
diluted systems of dipoles, which are placed at random on
the sites of a SC lattice and point up or down along a chosen
principal axis. Since in the limit of low-concentrations de-
tails of the lattice are expected to become irrelevant, our
results have direct connection with the experimental and nu-
merical work mentioned above. In this regard, we follow
along the lines of Ref. 32. But we aim to go further. It is our
purpose to also find whether the SG phase of the PAD model
behaves marginally, that is, it has quasilong-range order �as
the XY model35 in two-dimensional �2D�	, or whether it has
spatially-extended states,36 as in the droplet37 and
replica-symmetry-breaking38 pictures of the SG phase.

The plan of the paper is as follows. In Sec. II we define
the model, give details on how we apply the parallel tem-
pered Monte Carlo �TMC� algorithm,39 in order to get equi-
librium results. We also define the quantities we calculate,
including the spin overlap28 q, and �L, often referred to as a
“correlation length.”40–42 In Sec. III we give results for the
dipolar AF phase we obtain for x	xc, where xc�0.65, as
well as for its nature and boundary. In Sec. IV, we give
numerical results we have found for �i� q distributions and
�ii� �L /L, within the following x and T ranges, 0.2�x
�0.65 and 0.6x
T�1.5x. In Sec. V A we examine the evi-
dence we have in favor of the existence of a paramagnetic to
SG phase transition when x�xc, and find that the transition

TABLE I. Spin-glass transition temperature for PAD systems. NIL is entered where a transition has been
concluded not to take place. For LiHoxY1−xF4, we let d=5.175 Å, hence the mean number of spins in volume
d3 is nd=1.926x �since unit cells of LiHoYF4 are 5.175�5.175�10.75 Å3 large and have four Ho ions each
�Ref. 3�	; furthermore, �d=0.214 K �Ref. 34�. On simple cubic lattices, we let d=a, hence nd=x. �3 is the
nonlinear susceptibility, and  is the critical exponent for the correlation length.

On LiHoYF4-type lattices

Ref. Method x
nd�d

�K� kBTsg /nd�d 

21 �3 0.167 0.069 1.9

22 �3 0.045 0.019 2.3

23 �3 0.167 0.069 3.1

24 �3 0.165 0.068 NIL

24 �3 0.045 0.019 NIL

31 MC 0.06 0.025 NIL

31 MC 0.12 0.049 NIL

32 MC 0.125 0.052 1.8 1.3

32 MC 0.0625 0.026 1.6 1.3

On simple cubic lattices

Ref. Method x kBTsg /nd�d 

33 MC 0.045, 0.12, 0.20 NIL

Here MC 0.35 1.0�1� 0.95

Here MC 0.20 1.0�1� 0.95
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temperature is given by kBTsg�x�d, where �d is a nearest-
neighbor dipole-dipole interaction energy which is defined in
Sec. II. In order to study the nature of the SG phase, we
examine the following evidence in Sec. V B: �i� the mean
values ��q�� and �q2� decrease algebraically with L as L in-
creases, �ii� double-peaked, but wide, distributions of q / ��q��
appear to be independent of L, and �iii� �L /L rises with L at
constant T but extrapolates to finite values as 1 /L→0. We
provide a specific example of spatial correlation functions
which decay algebraically with distance but lead to �L /L
curves that spread out with L �for finite values of L� as T
decreases below Tsg, in rough agreement with our MC results
for �L /L. All of this is consistent with quasilong-range order
in the SG phase. In Sec. V C we find the best pair of values
for Tsg and , to have curves �L /L for various values of L
collapse onto a single curve if plotted vs �T /Tsg−1�L1/ over
the T	Tsg range. The values given in Table I are obtained.

II. MODEL, METHOD, AND MEASURED
QUANTITIES

A. Model

We consider site-diluted systems of Ising magnetic di-
poles on a SC lattice. All dipoles point along the z axis of the
lattice. Each site is occupied with probability x. The Hamil-
tonian is given by

H =
1

2

ij

Tij�i� j , �1�

where the sum is over all occupied sites i and j except i= j,
�i= �1 on any occupied site i

Tij = �a�a/rij�3�1 − 3zij
2 /rij

2 � , �2�

where rij is the distance between i and j sites, zij is the z
component of rij, �a is an energy, and a is the SC lattice
constant. In the following we give all temperatures and en-
ergies in terms of �a /kB and �a, respectively. Hence,
kBT /na�a=T /x from here on.

This model is clearly an Ising model with long-range in-
teractions where bond strengths Tij are determined by the
dipole-dipole terms. Note that Tij signs are not distributed at
random but depend only on the orientation of vectors rij on a
SC lattice. This is to be contrasted with a random-axes dipo-
lar �RAD� model, �Ref. 18� in which Ising dipoles point
along directions ni= �ni

� ,�=1,2 ,3� that are chosen at ran-
dom by sorting two independent random numbers for each
site, introducing randomness on bond strengths Tij

��. This is
why PADs exhibit AF order at high concentration in contrast
with RADs, that do not.18

B. Method

We use periodic boundary conditions �PBC�. As is usual
for PBC, think of a periodic arrangement of replicas that
span all space beyond the system of interest. These replicas
are exact copies of the Hamiltonian and of the spin configu-
ration of the system of interest. Details of the PBC scheme
we use can be found in Ref. 12. We let a spin on site i

interact through dipolar fields with all spins within an L
�L�L cube centered on it. No interactions with other spins
are taken into account. This introduces an error which we
show in Appendix to vanish as L→�, regardless of whether
the system is in the paramagnetic, AF or SG phase. There is,
therefore, no effect on the thermodynamic limit of the system
of interest here. �The result we obtain in Appendix is not
applicable to an inhomogeneous ferromagnetic phase or criti-
cal region that may obtain on other lattices.�

In order to bypass energy barriers that can trap a system’s
state at low temperatures in the glassy phase we have used
the parallel TMC algorithm.39,43 We apply the TMC algo-
rithm as follows. We run in parallel a set of n identical sys-
tems at equally spaced temperatures Ti, given by Ti=T0

− i�T where i=0, . . . ,n−1 and �T	0. By identical we
mean here that all n systems have the same quenched distri-
bution of empty sites, though each system starts from an
independently chosen initial condition. We apply the TMC
algorithm to any given system in two steps. In the first step,
system i evolves independently for eight MC sweeps under
the standard single-spin-flip Metropolis algorithm.44 �Owing
to dipolar interactions, the MC sweep time scales as N2,
where N is the number of spins.� We update all dipolar fields
throughout the system every time a spin flip is accepted. In
the second step, we give system i a chance to exchange states
with system i+1 evolving at a lower temperature Ti−�T. We
accept exchanges with probability P=1 if �E=Ei−Ei+1�0,
and P=exp�−���E� otherwise, where ��=1 /Ti+1−1 /Ti.
The cycle is complete when i has been swept from 0 to n
−2. Thus, we associate eight MC sweeps with each cycle.
For the simulation to converge at low temperatures it is im-
portant to choose �T small enough to allow frequent state
exchanges between systems. This will often be fulfilled if
���E
1. The required condition, �T
T /�Nc, follows for
�T where c is the specific heat per spin. Then, we obtain
appropriate values for �T from inspection of plots of the
specific heat vs T.18 We find it helpful to have the highest
temperature T0 at least twice as large as what we expect to be
the transition temperature between the paramagnetic and the
ordered phase for obtaining equilibrium results in the or-
dered phase.

In our simulations the n identical systems start from com-
pletely disordered spins configurations. We need equilibra-
tion times t0 of at least 4�106 MC sweeps for x�0.7 for
systems with a number dipoles N�200 �see at the end of this
sections for details on how we choose t0�. Thermal averages
come from averaging over the time range �t0 ,2t0	. We further
average over Nr samples with different realizations of disor-
der. Values of the parameters for all TMC runs are given in
Table I.

C. Measured quantities

We next specify the quantities we calculate. We obtain the
specific heat from the temperature derivative of the energy.
For the staggered magnetization, we define, as befits a PAD
model on a SC lattice12
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m = N−1

i

�i�− 1�x�i�+y�i�, �3�

where x�i� and y�i� are the space coordinates of site i. We
calculate the probability distribution Pm as well as the mo-
ments

mn � ��m�n� �4�

for n=1,2, where �¯ � stand for averages over time and over
a number Nr of system samples with different quenched dis-
order. Unless otherwise stated, time averages are performed
over a time range t0� t�2t0 and t0 is chosen as specified
below in order to ensure equilibrium. We make use of these
moments to calculate the staggered susceptibility and the
mean square deviation of �m� /m1, that is,

�m
2 =

m2

m1
2 − 1. �5�

In order to spot SG behavior, we also calculate the Edwards-
Anderson overlap parameter28

q = N−1

j

� j , �6�

where

� j = � j
�1�� j

�2�, �7�

where � j
�1� and � j

�2� are the spins on site j of identical replicas
�1� and �2� of the system of interest. As usual, identical rep-
licas have the same Hamiltonian and are at the same tem-
perature but are in uncorrelated states. Clearly, q is a mea-
sure of the spin-configuration overlap between the two
replicas. As we do for m, we calculate the probability distri-
bution Pq as well as the moments q1= ��q�� and q2= �q2�, in
analogy to Eq. �4�. The SG susceptibility �sg is given by Nq2.
Finally, we also make use of the relative mean-square devia-
tion of q, �q

2=q2 /q1
2−1.

We need to make sure that equilibrium is reached before
we start taking measurements. To this end, we define a time-
dependent spin overlap q̃ not between pairs of identical sys-
tems but between spin configurations of the same system at
two different times t0 and t1= t0+ t of the same TMC run

q̃�t0,t� = N−1

j

� j�t0�� j�t0 + t� . �8�

Let q̃2�t0 , t�= ��q̃�t0 , t�	2�. Suppose thermal equilibrium is
reached long before time t0 has elapsed. Then, q̃2�t0 , t�→q2
at some time t long before t= t0. Plots of q̃2�t0 , t� vs t, for
10−6t0� t� t0, for t0=107 MC sweeps, are shown in Fig. 1
for x=0.20 and various values of T. Plots of q2, obtained by
averaging q2 over time, not starting at t= t0, as we do every-
where else in order to obtain equilibrium values, but starting
at t=0, from an initial random spin configuration, are also
shown in Fig. 1 for comparison. Note that both quantities do
become approximately equal when t�105 MC sweeps. In
order to obtain equilibrium results, we have always chosen
sufficiently large values of t0 to make sure that q̃2�t0 , t�
→q2 long before t= t0. All values of t0 and Nr are given in
Table II.

As has become customary in SG work,40–42 we calculate
quantity �L

�L
2 =

1

4 sin2�k/2� �q2�
��q�k��2�

− 1� , �9�

where

q�k� = N−1

j

� je
ik·rj , �10�

where r j is the position of site j and k= �2� /L ,0 ,0�. Recall
this system is anisotropic, interactions along the spin axes
are twice as large as in a perpendicular direction. We have
found this direction of k �perpendicular to all spin directions�
to be more convenient to work with than the direction along
the spin axes.

Note that replacement of exp�ik ·r j� by 1− ik ·r j gives

�L
2 =



ij

�k · �ri − r j�	2��i� j�

8 sin2�k/2�

ij

��i� j�
. �11�

This is right in the �L /L→0 limit. The above equation
clearly shows that �L is then �up to a multiplicative constant�
the spatial correlation length �in the k direction� of ��0�r�.
Therefore, we can think of ��, the L→� limit of �L, as the
correlation length of a macroscopic system in the paramag-
netic phase. In a condensed phase, on the other hand, con-

densate fluctuations generally take place over finite lengths �̄,
but �L /L→� as L→� if there is strong long-range order,
that is, if ��0�r� does not vanish as r→�. One would have

to replace � by �− ��� in Eq. �9� in order to relate �� to �̄.
Following current usage, we shall nevertheless refer to �L as
“the correlation length.” In contrast with Pq and its first mo-
ments, �L takes into account spatial variations in the EA
overlap q and is yet another probe for detecting a SG
transition.40–42
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FIG. 1. �Color online� Semilog plots of q̃2�t0 , t� and q2 vs time t
�in MC sweeps� for systems of 8�8�8 spins at the values of T
shown in the figure. Here, q2 comes from averages of q2 over time,
starting at t=0 from an initial random spin configuration. Here, t0

=107 MC sweeps. A data point at time t stands for an average over
a time interval �t ,1.2t	 and over 103 system samples.
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TABLE II. Parameters of the tempered MC simulations. x is the probability that any given site is occupied
by a magnetic dipole; L is the linear lattice size; �T is the temperature step in the TMC runs; To and Tn are
the highest and the lowest temperatures, respectively; Nr is the number of �quenched� disordered samples;
and a number t0 of MC sweeps are made before any measurements are taken. The measuring time interval is
�t0 ,2t0	 in every case.

x=0.20, �T=0.02, T0=0.8

L 4 6 8 10

Tn 0.06 0.06 0.06 0.12

Nr 8500 3800 1000 800

t0 5�107 5�107 5�107 5�107

x=0.35, �T=0.05, T0=2.0

L 4 6 8 10 12

Tn 0.05 0.05 0.05 0.275 0.35

Nr 9000 5000 1100 380 200

t0 4�106 4�106 4�106 4�106 4�106

x=0.50, �T=0.05, T0=2.0

L 4 6 8 10

Tn 0.1 0.05 0.05 0.35

Nr 1000 650 500 300

t0 5�105 5�105 4�106 107

x=0.60, �T=0.1, T0=2.0

L 4 6 8 10

Tn 0.10 0.10 0.20 0.30

Nr 1400 500 800 300

t0 4�106 4�106 4�106 4�106

x=0.65, �T=0.1, T0=3.0

L 4 6 8 10

Tn 0.10 0.10 0.10 0.30

Nr 1400 900 1400 540

t0 4�106 4�106 4�106 4�106

x=0.70, �T=0.1, T0=3.0

L 4 6 8 10

Tn 0.10 0.10 0.10 0.30

Nr 750 200 100 100

t0 4�106 4�106 4�106 106

x=0.75, �T=0.1, T0=3.0

L 4 6 8 10

Tn 0.10 0.10 0.10 0.10

Nr 1000 200 100 100

t0 4�106 4�106 2�106 106

x=0.80, �T=0.1, T0=3.0

L 4 6 8 10

Tn 0.10 0.10 0.10 0.10

Nr 600 200 220 100
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III. AF PHASE

Our main results for the PAD model are summarized in
the phase diagram exhibited in Fig. 2. A thermally driven
second-order transition takes place at the phase boundary
between the paramagnetic and AF phases. The phase bound-
ary meets the T=0 line at x�0.65. We shall refer to the
value of x at this point as xc.

In this section we report the numerical evidence for the
paramagnetic-AF transition.45 Results having to do with the
spin glass are given in the next section.

The AF phase is defined by the staggered magnetization,
as given in Eq. �3�. We illustrate in Fig. 3�a� how the stag-
gered magnetization m1 behaves with temperature for x
=0.8. This is in sharp contrast to the behavior of m1 for small
x, where an AF phase does not exist. Such behavior is ex-
hibited in Fig. 3�b�. Note that m1 appears to decrease as N
increases even at low T. We obtain similar results for the
staggered magnetization for other values of x �shown in Fig.
2� below xc. This is our first piece of evidence for the non-
existence of an AF phase below some xc and that xc�0.6.
We return to this point in the discussion of Fig. 4.

Plots of the specific heat C vs T are shown in the insets of
Figs. 3�a� and 3�b�. Note the sharp variation in C vs T near
T=1.5, in Fig. 3�a�, as one expects from a paramagnetic-AF
phase transition. Note also how, as one expects for a
paramagnetic-SG transition, C varies smoothly for a smaller
value of x, in Fig. 3�b�.

For further information about the extent of the AF phase,
we now examine how m varies with N for some values of x
and of T. Compare the log-log plots of m2 versus the number
of dipoles N on Figs. 4�a� and 4�b�, respectively. The data
points in Fig. 4�a� are consistent with a second-order phase

transition from a magnetically disordered phase, above T
=1.2�1�, for which Nm2=O�1�, to a strong long-range order
below T=1.2�1�, where m2=O�1�. Note that m2�1 /Np at
T=1.2. From the definition of � �see Sec. V B or Ref. 46�,
3p=1+� follows, which gives �=0.05. We are however not
too interested here in such details of the critical behavior on
the T=TAF�x� line. In Fig. 4�b�, m2 vs N plots show faster
than algebraic decay with N. This shows we are then beyond
the bounds of the AF phase. We have followed this criterion
as a first approach in establishing the boundary of the AF
phase. Plots of m1 �instead of m2� vs N show the same quali-
tative behavior.

We draw more quantitative results about the AF phase
boundary from the behavior of the relative uncertainty �m

2 .
We first outline how we expect �m

2 to behave as a function of
T and x in the various magnetic phases. It clearly follows
from its definition in Eq. �5� that �m

2 →0 as N→� in the AF
phase. It also follows immediately from the law of large
numbers that, in the paramagnetic phase, �m

2 →� /2−1 as
N→�. These two statements imply that curves of �m

2 vs T
for various values of N cross at the phase boundary between
the paramagnetic and AF phases. We make use of this fact to
quantitatively determine the AF-paramagnet phase boundary.
The same criterion can be applied to the AF-SG phase
boundary. To see why this is so, note that, the plots shown in
Fig. 4�b� for x=0.5 suggest m2→N−1 as N→�, even at low
temperatures, that is, well within the SG phase. Plots of �m

2

vs T are shown in Figs. 5�a� and 5�b� for x=0.7 and 0.6,
respectively. The signature of an AF phase below T�1.2
clearly shows up in Fig. 5�a�. We have thus established all
points of the AF phase boundary shown in Fig. 2 for x

TABLE II. �Continued.�

t0 4�106 4�106 106 106

0.0 0.2 0.4 0.6 0.8 1.0x
0

1

2

T

0.5 0.6 0.7 0.8 0.9
x

0.0

1.0

m
2

AF

SG

FIG. 2. �Color online� Phase diagram of the PAD model. �

stand for the Néel temperature TAF and � stand for the SG transi-
tion temperature Tsg. � stand for maxima value of x for which m2

decreases as N increases for each of three fixed values of T. The full
line for the phase boundary between the paramagnetic and AF
phases is a fit to the data points, given by, TAF�3.8�x−xc�0.4, where
xc=0.65. The straight dashed line is for Tsg=x�a. In the inset, m2

versus x for T=0.4. �, �, �, and �, stand for L=10, 8, 6, and 4,
respectively.
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T
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0.6

0.8

1.0

m
1

0.0 0.5 1.0 1.5 2.0
T

0.0

0.2

0.4

0.6

0.8

1.0

m
1

0.0 3.0T
0.0

0.6

C
/k
B

0.0 3.0T
0.0

0.4

C
/k
B

(b)(a)
x=0.8 x=0.6

FIG. 3. �Color online� �a� Staggered magnetization m1 vs T for
x=0.8. Icons �, �, �, and � stand for L=10, 8, 6, and 4, respec-
tively. Lines are only guides to the eye. Note m1 grows with L at
low temperature, consistently with an AF phase. In the inset, spe-
cific heat vs T for the same values of x and of system sizes. The
sharp variation C with respect to T near T=1.5 is consistent with an
AF phase transition thereon. �b� Same as in �a� but for x=0.6. Note
�i� m1 decreases with L at all temperatures, consistently with the
nonexistence of an AF phase and �ii� a rounded specific heat, con-
sistent with a SG transition. In all panels, error bars are smaller than
symbol sizes.
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�0.7. For the low-temperature portion of the phase bound-
ary �near x=0.65� this procedure is not very effective. From
Fig. 5�b�, we infer that the AF boundary line must drop to a
T=0 value at some x	0.60. The three data points shown for
x�0.65 and T�1 are obtained from plots such as the one
shown in the inset of Fig. 2 for T=0.4.

IV. SG PHASE

In this section, we report numerical results we draw from
tempered MC calculations for q2, for distributions of q, and
for �L. Because we expect, from the argument given in Sec. I,
lattice-independent behavior for x�1, we emphasize the re-
sults we have obtained for the two smallest values of x we
have dealt with, x=0.2 and x=0.35 �that is, x�0.3xc and x
�0.54xc�.

A plot of q2 versus T is shown in Fig. 6. Note that q2
decreases as N increases, even at low temperatures. We have
found similar behavior for other values of x satisfying x

xc. Inspection of this figure raises the question of whether
q2 vanishes as L→�. In order to advance in this direction,

we do log-log plots of q2 vs N, which we show in Figs.
7�a�–7�c�, for the values of x shown therein. The data points
in these three figures seem consistent with, q2�N−p for
T /x
1, where 3p=1+�, as follows from the definition of �
in Sec. V B �see also Ref. 46�. �2 values for q2�N−p fits to
sets of data points, for T /x
1 �for which they are appropri-

101 102 103
N

0.1 m
2

T=0.2
T=0.4
T=0.6
T=0.8
T=1.0

101 102 103
N

0.1m
2

T=0.6
T=0.8
T=1.0
T=1.2
T=1.4
T=1.6

(a)
0.7

0.02

(b)x=0.7 x=0.5

0.02

0.7

FIG. 4. �Color online� �a� Log-log plots of m2 versus N for x
=0.7 and the values of T shown. Continuous lines are guides to the
eye, except for the straight line over the data points for T=1.2,
which is for 1 /N0.35. A dashed line shows the slope one expects for
a macroscopic paramagnet. �b� Same as in �a� but for x=0.5. In all
panels, error bars are smaller than symbol sizes.
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x=0.7 x=0.6

x=0.6x=0.7

FIG. 5. �Color online� �a� Plots of �m
2 vs T, for x=0.7. �, �, �,

and � are for L=10, 8, 6, and 4, respectively. Lines are guides to
the eye. The thick dashed line is for the macroscopic paramagnetic
limit � /2−1. �b� Same as in �a� but for x=0.6. �c� Plots of �q

2 vs T,
for x=0.7. Symbols are as in �a�. �d� Same as in �c� but for x=0.6.
Error bars are shown only where they are larger than symbol sizes.

0.0 0.2 0.4
T

0.1

1.0

q 2

0.02

x=0.2

FIG. 6. �Color online� Semilog plots of q2 versus T for x=0.2
and L=10 ���, L=8 ���, L=6 ���, and L=4 �� �. All error bars
are smaller than symbol sizes.
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(a) x=0.5
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0.02

FIG. 7. �Color online� �a� Plots of q2 versus the number of
dipoles N for x=0.5. �, �, �, �, �, �, �, and � stand for T
=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Lines are
guides to the eyes. �b� Same as in �a� but for x=0.35. �, �, �, �,
�, �, and �, stand for T=0.25, 0.3, 0.35, 0.4, 0.45, 0.5, and 0.6,
respectively. �c� Same as in �a� but for x=0.2. �, �, �, �, �, �,
�, and �, stand for T=0.12, 0.14, 0.16, . . ., 0.22, 0.26, and 0.30.
For all data, we have checked that, within errors, q̃2=q2. Clearly,
data point sets for larger temperatures deviate from the straight
dashed lines shown �implying faster than a power of 1 /L decay�
while sets for lower temperatures do not. Error bars are shown only
where they are larger than the icon sizes. For each set of points with
given x and T values, �2 values for straight line fits, as well as the
largest error, are given in Table III.
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ate� as well as for T /x�1 �for which they are not appropri-
ate�, are given in Table III. Plots of q1 vs N show the same
qualitative behavior. All of this is in accordance with
quasilong-range order. We return to this point below and in
Sec. V B.

Reading off values of p from plots shown in Figs.
7�a�–7�c�, we obtain � for x�0.5 and various values of T.
The relation �=−1+ax�T /x�2 fits the data rather well for all
T /x
1, if we let ax=0.76,0.98,1.18 for x=0.2,0.35,0.5,
respectively. In order to be able to conclude that ��Tsg� var-
ies with x, we would need to know Tsg within an error of
10%. Unfortunately, we find below �in Sec. V A� an error in
Tsg which is not much smaller than 10%.

For higher values of T /x, q2 vs N curves downwards, as
expected for the paramagnetic phase. Approximate values of
Tsg can thus be obtained from such plots but more accurate
methods are given below. It is reassuring to see in Figs.
7�a�–7�c�, the values of q̃2 we have obtained agree, within
errors, with the values for q2.

We next give distributions of q we have found. We make
use of a normalized distribution Pq�qr�, where qr=q /q1. In
macroscopic paramagnets, qr is expected to be normally dis-
tributed, as follows from the law of large numbers and the
fact that spin-spin correlation lengths are then finite. On the
other hand, Pq= ���qr−1�+��qr−1�	 /2, where � is the Dirac
delta function, in a SG phase, according to the droplet pic-
ture of SGs.37 Plots of Pq vs qr are shown for x=0.2 in Figs.
8�a�–8�c�. Clearly, Pq�qr� drifts with system size in Fig. 8�a�,
for T=0.28. Our results are consistent with Pq�qr�
→ �1 /��exp�−qr

2 /�� as N→�, which is in accordance with a
paramagnetic phase. On the other hand, we find for lower-
temperatures double-peaked distributions in Figs. 8�b� and
8�c� that are fairly broad and, within errors, do not change
with N. This is contrary to the prediction of the droplet-
model theory of SGs. From these graphs we conclude that
0.16�Tsg�0.26 for x=0.2. Analogous plots for x=0.35 �not
shown� give 0.30�Tsg�0.45.

Results for the scale-free quantity �q
2 follow. Recall that,

as explained for �m
2 , �q

2→� /2−1 as N→� in the paramag-
netic phase, vanishes when there is strong long-range order,
and goes, at the critical temperature, to some intermediate

value that is size independent. This is as shown in Fig. 5�c�
for x=0.7 where curves for various values of N cross at TAF.
Figures 5�a� and 5�c� look rather similar because q and m are
not qualitatively different in the AF phase. This is not so for
x�xc, where there is no AF order. Figures 5�b� and 5�c� for
x=0.6 show that, within errors, curves of �q

2 vs T for differ-
ent system sizes merge �not cross� near T=0.65 while �m

2

increases with N for all temperatures. Similarly, �q
2 vs T

curves merge, for x=0.65, near T=0.75 �not shown�. Plots of
�q

2 vs T /x are shown in Figs. 9�a�–9�c� for lower concentra-
tions.

TABLE III. �r
2 values for two-parameter q2=c /Np fits to sets of data points for q2 vs T displayed in Figs.

7�a�–7�c�. As usual, we define �r
2=�2 /df , where df is the number of data points in each set minus the number

of fitting parameters �2, here�. The largest errors �q2 of q2 from all data points for each x and T are also
given.

x=0.50 x=0.35 x=0.20

T �r
2 �q2 T �r

2 �q2 T �r
2 �q2

0.10 1.29 0.01 0.20 0.21 0.008 0.12 0.28 0.01

0.20 0.84 0.01 0.30 0.70 0.01 0.14 0.22 0.01

0.30 0.91 0.01 0.35 0.38 0.02 0.16 0.15 0.01

0.40 0.96 0.008 0.40 0.52 0.012 0.18 0.08 0.01

0.50 0.12 0.006 0.45 1.70 0.008 0.20 0.03 0.01

0.60 0.46 0.004 0.50 3.50 0.004 0.22 0.12 0.01

0.70 1.96 0.004 0.60 15.09 0.003 0.26 1.24 0.008

0.80 2.20 0.003 0.30 3.38 0.006

0.1

P q

0.1

P q

-2 0 2
q/q1

0.1

1.0

P q

(a) T/x=1.4

(c) T/x=0.6

(b) T/x=0.8

0.3
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0.3

0.6

0.2

FIG. 8. �Color online� �a� Plots of the probability distribution Pq

versus q /q1 for x=0.2 and T=0.28. �, �, and � are for L=10, 8,
and 6, respectively. The thick dashed line is for the Gaussian dis-
tribution that ensues for a paramagnet in the macroscopic limit. �b�
Same as in �a� but for T=0.16. �c� Same as in �a� but for T=0.12.
Error bars are shown wherever they are larger than symbol sizes.
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We notice that curves in Figs. 9�a�–9�c� differ only
slightly. This follows from the argument given in Sec. I,
which shows that all physical quantities for three-
dimensional dipolar systems can only be functions of T /x for
x�1. The data points in Fig. 9 show that �q

2→� /2−1 as
N→�, for T /x�1, as expected for the paramagnetic phase.

Curves for �q
2 vs T seem to merge at a lower temperature,

near T /x=0.9. However, closer scrutiny shows that these
curves actually cross, albeit at very small glancing angles.
This can be appreciated in Figs. 9�d�–9�f�, where plots of the
ratios �q

2�L� /�q
2�4� vs T are given for various values of L, for

x=0.5, x=0.35, and x=0.2, respectively. Note that the weak
dependence of �q

2 with system size at low temperatures is in
accordance with our result that Pq�qr� does not change ap-
preciably with system size below Tsg. This point is further
elaborated in Sec. V B

Following the lead of Refs. 40 and 41, who have found
that �L /L �defined in Sec. II C� crosses at Tsg and spreads out
as T decreases below Tsg for the EA model in 3D, we next
examine how �L /L behaves for the PAD model. As pointed
out in Sec. I and Table I, this has already been done for the
PAD model on a LiHoxY1−xY4 lattice by Kam and Gingras.32

As we also point out in Sec. I, we aim to explore the behav-
ior of the PAD model, not only near Tsg but also deep into
the SG phase. Recall that �L becomes a true correlation
length when �L /L�1. Then, in the paramagnetic phase,
�L /L�O�1 /L�, therefore decreasing as L increases. At T
=Tsg, �L /L must become size independent, as expected for a
scale-free quantity. The inferences one can make about the
nature of the condensed phase from the behavior of �L where
T�Tsg is the subject of Sec. V B. Without further comment,

we next report our results. Plots of �L /L versus T /x are
shown in Figs. 10�a� and 10�b� for x=0.35 and 0.2, respec-
tively. Note that curves spread out above and below T /x
�1. For x=0.35, curves for all L cross at Tsg /x=0.95�5�. On
the other hand, the temperatures where pairs of curves for
lengths L2 and L1 cross for x=0.2 decrease as lengths L2 and
L1 increase �see Fig. 10�b�	, pointing to a Tsg /x
1.1.

V. EXISTENCE AND NATURE OF THE SG PHASE

In this section we examine the numerical results given in
the previous section. We �i� arrive at values for Tsg as a
function of x, �ii� show that weak long-range order is consis-
tent with our results for the SG phase, and �iii� draw values
for the critical exponent  for various values of x.

A. Value of Tsg

Recall first that �q
2 vs T curves for different values of L

are supposed to come together as T approaches Tsg from
above. This behavior is exhibited in Figs. 9�a�–9�c�. A closer
view of how such curves actually meet at T=Tsg is offered in
Figs. 9�d�–9�f�, where plots of y�L ,4� versus T /x, where
y�L ,L��=�q

2�L� /�q
2�L��, are shown. One aims to find the L

→� and L�→� limit of y�L ,L��=1, which gives the value
of Tsg. We find that y�L ,L��=1 at values of T /x that increase
with L and L�, which is reassuring, because it shows that Tsg
does not vanish. Furthermore, we draw the following lower
bounds from the plots in Figs. 9�d�–9�f�, Tsg /x
�0.95,0.8,0.95, for x=0.5,0.35,0.20, respectively.

We obtain a complementary determination of Tsg from the
intersection of �L /L vs T curves. This is as is sometimes
done for the EA �Refs. 40–42� and PAD �Ref. 32� models.
We obtain, from Fig. 10�a�, Tsg /x�0.95 for x=0.35. In Fig.
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FIG. 9. �Color online� �a� Plots of �q
2 vs T /x, for x=0.5. �, �,

�, and � are for L=10, 8, 6, and 4, respectively. �b� Same as in �a�
but for x=0.35. �c� Same as in �a� but for x=0.2. �d� Plots of
�q

2 /�q
2�4� vs T for x=0.5. Symbols are as in �a�. �e� Same as in �d�

but for x=0.35. �f� Same as in �d� but for x=0.2. In panels �a�, �b�,
and �c�, all error bars are smaller than symbol sizes.
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FIG. 10. �Color online� �a� Semilog plots of �a� �L /L versus T /x
for x=0.35, and L=10 ���, L=8 ���, L=6 ���, and L=4 ���.
Dashed line follows from 1 /L→0 straight line extrapolations in the
plots shown in Fig. 12�a� for T�Tsg. Continuous lines are guides to
the eye. �b� Same as in �a� but for x=0.2. All error bars are smaller
than symbol sizes.
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10�b�, we see that �L /L vs T curves meet at decreasingly
smaller values of T as L increases. We thus obtain Tsg /x

1.1 for x=0.2. From these two complementary determina-
tions, we arrive at: Tsg /x=1.0�1� for x
0.5.

An aside follows about the result by Snider and Yu,33 that
Tsg=0 for x=0.045, 0.12, or 0.2. This is, of course, in clear
contradiction with our results. Their conclusions come from
their work with the Wang-Landau47 variation in the MC al-
gorithm. Their evidence is from plots of Tg versus N, where
Tg is the temperature at which Pq becomes flattest. This pro-
cedure makes sense because Tg→Tsg as N→�. They found
Tg to vanish as N−1/2 for several x values, including x=0.2.
We now repeat this procedure using our own data, including
the ones for x=0.2. In Fig. 11�a� we plot the flattest distri-
butions we found for x=0.2 and L=4, 8, and 10. Note in
passing that all scaled distributions coincide and have there-
fore the same value of �q

2. Plots of the values of Tg /x we
have obtained for x=0.5, 0.35, and 0.2 are shown in Fig.
11�b�. Our data points are in clear contrast to the Tg�N−1/2

trend of Ref. 33 and point to Tsg /x�1. Whether this dis-
agreement comes from using a different Monte Carlo
method, or from the unusual definition of q in Ref. 33, we do
not know.

B. Marginal behavior

Here we discuss how various pieces of evidence �includ-
ing crossings of �L /L vs T curves� lead us to the conclusion
that the SG phase of the PAD model behaves marginally.
That is to say, that �q2�→0 and �sg→� in the macroscopic
limit.

The variation in �q2� with L for various temperatures, ex-
hibited in Figs. 7�a�–7�c�, has already been considered in
Sec. IV. For all x�xc, T�Tsg, and all system sizes we have
studied, we find no deviation from �q2��L−�1+��. Nor do we
find any size dependence in Pq�qr�. This is illustrated in Figs.
8�b� and 8�c�, and is in accordance with the behavior of the
distribution of the magnetization that is observed19 in the
condensed phase of the 2D XY model. Note that the variation
in �q

2 with system size is a measure of the variation in Pq�qr�.
The very small changes we have observed in �q

2 as L varies

in the PAD model for all T
Tsg turn out to be smaller than
the corresponding changes in the XY model.19 This is, of
course, in marked contrast with the behavior one expects of
the corresponding quantity for a strongly ordered system,
such as the droplet model of SGs or an ordinary ferromagnet,
in which �q

2→0 in the macroscopic limit of the ordered
phase. Neither do our results fit into a replica-symmetry-
breaking �RSB� scenario,38 in which q2 does not vanish as
L→� and would have Pq�qr� changing with system size
since Pq�q� is wide and does not change with system size in
the SG phase.

We now analyze the data we have for �L. First, we outline
how we expect �L /L to spread out as T decreases below Tsg
in various SG scenarios.

1. Condensate with short-range order fluctuations

In such a SG phase, q2�0 and ��0�r�− ��0���r� would be
short ranged. This would fit into the droplet model of spin
glasses.37 It then follows straightforwardly from its definition
�Eq. �9�	 that �L

2 /L2�Ld. Here, d=3, and there is nothing in
the plots of �L /L vs 1 /L, which are shown in Figs. 12�a� and
12�b�, to suggest that �L

2 /L2�L3 at any nonzero temperature.

2. Condensate with long-range order fluctuations

Let �A�q be the thermal average of A over all states with a
given q value. Clearly, �A�=��A�qPqdq. Assume q2�0, and
����0�r�q−q2	Pqdq=G�r�, where
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FIG. 11. �Color online� �a� Plots of distributions Pq versus q /q1

for x=0.2 and the shown values of L and T. Error bars are shown
only where they are larger than symbol sizes. �b� Plots of Tg /x
versus N for the shown values of x. The thick dashed line stands for
the N−1/2 behavior obtained in Ref. 33.
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FIG. 12. �Color online� �a� Semilog plots of �L /L versus 1 /L for
x=0.35, and T /x=0.143 ���, T /x=0.286 ���, T /x=0.571 ���,
T /x=0.857 �	�, T /x=1.00 ���, T /x=1.14 ���, T /x=1.43 ���,
T /x=1.71 ���, and T /x=2.00 ���. �b� Same as in �a� but for x
=0.20, and T /x=0.300 ���, T /x=0.500 ���, T /x=0.700 ���,
T /x=1.00 �	�, T /x=1.10 ���, T /x=1.30 ���, T /x=1.50 ���,
T /x=2.00 ���, and T /x=2.50 ���. All errors are: between 2% and
3% in �a�, and between 2% and 4% in �b�, and are thus hidden
behind the icons. In both �a� and �b�, the straight dashed lines give
�r

2�1 fitting values, except for T /x=1.0 in �b�, for which �r
2=3.3.

JUAN J. ALONSO AND JULIO F. FERNÁNDEZ PHYSICAL REVIEW B 81, 064408 �2010�

064408-10



G�r� �
A

rd−2+� �12�

for r�a, where A is a constant. This behavior fits in with the
RSB picture.38 Then, it follows from its definition �Eq. �9�	
that �L

2 /L2�L1+�. Recall, from Sec. IV, that ��−1
+ �T /Tsg�2 in the SG phase. Evidence for �L

2 /L2�L1+� ap-
pears neither in Fig. 12�a� nor in Fig. 12�b�.

3. Marginal behavior

Then, q2=0 and ��0�r�=G�r�. This is as in the Kosterlitz-
Thouless theory35 of the 2D XY model. It then follows
straightforwardly from the definition of �L /L that �L /L be-
comes independent of L for very large L. This is precisely
the outcome from 1 /L→0 extrapolations of the straight lines
shown in Figs. 12�a� and 12�b� for all T /x
1.

Note also in Figs. 12�a� and 12�b� that curves for �L /L vs
1 /L become steeper as T decreases below T /x�1. Now,
recall from above that q2�0 implies �L

2 /L2�Ld and �L
2 /L2

�L1+�, for short- and long-range fluctuations from the con-
densate. Note further that �1+�� decreases as T decreases.
This would lead to �L /L vs 1 /L curves which do not become
steeper as T decreases below T /x�1, which is in clear con-
tradiction with the observed behavior. This is an additional
piece of evidence for quasilong-range order.

Thus, the most straightforward interpretation of the data
shown in Figs. 12�a� and 12�b� leads us to suspect that the
SG phase in the PAD model behaves marginally. This might
seem to be in contradiction to the fact that �L /L curves do
cross, as shown in Fig. 10, and that, as pointed out in Ref.
41, �L /L vs T curves merge, not cross, for the 2D XY model,
as T→Tsg from above. �Indeed, no crossings occur for even
much smaller 2D XY systems than the ones for which data
points are shown in Ref. 41�. We next give a specific ex-
ample in order to illustrate how both merging and spreading
out as T decreases below Tsg can take place, depending on
some details in G�r�.

We first calculate �L /L from ��0�r�=G�r� and Eq. �12�
for all r except that G�r�=1 for all r�1. To proceed, we let
A=0.67 for T�Tsg but not too close to T=0, where one
expects A=1. We are not interested here in the T	Tsg range
but we nevertheless then let A→Ae−r/��, ��=7�T /Tsg−1�−,
and =1, which is roughly the value we obtain below �see
Sec. V C�. We make use of �=−1+ �T /Tsg�2, which we have
found in Sec. IV. Finally, in order to be able to make com-
parisons with our MC results, which we have obtained for
periodic boundary conditions, we let in Eq. �12�

r → Q−1

�=1

3

sin2�Qr���1/2

, �13�

where Q=� /L and r= �r1 ,r2 ,r3�. Straightforward numerical
implementation of Eq. �9� yields the data points that are plot-
ted in Fig. 13. Note the resemblance between Fig. 13 and
Figs. 10�a� and 10�b� which follow from our MC calcula-
tions.

Merging of �L /L curves at T=Tsg as T decreases is ob-
tained for all L�4 if, instead of A=0.667, we let 3A=3
− �T /Tsg�2. Note that A�Tsg�=0.667 and A�0�=1. If, on the

other hand, one lets 3A=3− �T /Tsg�s and 0�s
0.2, which
satisfies the same end-point conditions, one obtains plots for
�L /L vs T which look much like the ones shown in Figs. 10.

To summarize, all our data �including spreading out of
�L /L curves as T decreases below Tsg� are consistent with
marginal behavior in which the correlation length diverges at
Tsg as in a conventional phase transition, but weak-long-
range order occurs below Tsg, as in the 2D XY model.

C. � exponent

In accordance with the above, we look for the values of 
and Tsg which best collapse �L /L vs �T /Tsg−1�L1/ plots for
various values of L into a single curve for temperatures
above Tsg. The best results, exhibited in Figs. 14�a� and
14�b�, for x=0.35 and x=0.20, are obtained with Tsg /x
=1.0�1� and =0.95. Note the data points scatter below Tsg.
This is as expected, and is consistent with quasilong-range
order in the SG phase since �L /L becomes independent of L
then for sufficiently large L. Note that, as in the EA model,42

L=4 seems to be too small to scale properly.

VI. DISCUSSION

By tempered Monte Carlo calculations, we have studied
an Ising model on a simple cubic lattice. There are only
dipole-dipole interactions. Spins �randomly� occupy only a
fraction x of all lattice sites. We have calculated the entire
phase diagram of the system. It is shown in Fig. 2. We have
also provided strong evidence for the existence a SG phase
for 0�x�xc, where xc=0.65�5�. The SG transition tempera-
ture is given by Tsg�x��x. We have argued in Sec. I that this
result carries over into other lattices if �i� x�1 and �ii� we
replace the latter expression for Tsg by kBTsg=nd�d �see Table
I�. How we have arrived a this conclusion is described in
Sec. V A.

We have not dwelt on the applicability of our MC results
to experiments. That is beyond the scope of this paper. We
nevertheless make a few comments. Recall first that, as we
argue in Sec. I, lattice structure is of no consequence for very
dilute PAD models. Then, Tsg as well as the temperature Tm

0.2

0.3

0.4

0.5

0.6

0.6 0.8 1.0 1.2 1.4

L=4
L=6
L=8
L=10
L=20
L=100

�
L
/L

T/T
sg

FIG. 13. �Color online� Semilog plots of �L /L vs T /x from Eq.
�12� for the shown values of L. In Eq. �12�, we let A=0.67 and �
=−1+ �T /Tsg�2.
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where the specific heat takes its maximum value can only
depend �as in the MC simulations of Ref. 31� on nd�d �see
Table I�. We notice in Table I values for Tsg do not fully
comply with this rule. In addition, in very dilute
LiHoxY1−xF4 systems, Tm hardly changes with x.22 There are
several sources for the discrepancies between experiments on
very dilute LiHoxY1−xF4 and the PAD model. Quantum ef-
fects seem to play a role in experiments on very dilute
LiHoxY1−xF4 systems.25 This is not too surprising since tun-
neling can become relevant when barrier energies become
overwhelmingly large. However, we do not expect small per-
turbations that bring about tunneling and concomitant time-
dependent effects to have a significant effect on equilibrium
properties, which is the subject of this paper. In addition,
exchange couplings among nearest-neighbor spins31,48 are
disregarded in the PAD model we study. Note, however that
the effect of nearest-neighbor interactions must vanish as x
→0. Clustering of the spatial distribution of dipoles can also
lead to discrepancies.25 None of the above can however ac-
count for �i� the numerical differences between the MC re-
sults �see Table I� of Tam and Gingras,32 and ours, nor can
they account for the more serious discrepancy with �ii� Ref.
33, which we discuss in some detail in Sec. V A. Numerical
�not too large� discrepancies notwithstanding, our results
support the ones from Tam and Gingras32 that the dilute PAD
model does have a SG phase. On the other hand, for the roots
of the discrepancies with experimental results �see Table I�
on dilute LiHoxY1−xF4 systems, we have no clear picture.

As for the nature of the SG phase, all of our results are
consistent with quasilong-range order. Full details are given
in Sec. V B. We know of no previous study of the nature of

the SG phase of the PAD model with which to compare our
results. �Only the critical behavior of a PAD model is exam-
ined in Ref. 32.� On the other hand, our conclusion for the
PAD model can be compared with and one drawn for the EA
model in Refs. 40–42. They are both based on the behavior
of �L /L vs T curves for various values of L. The conclusions
differ, not so much because of the data but because we have
looked at the data differently �see Sec. V B and Refs.
40–42�.
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APPENDIX: WHY WE DO NOT DO EWALD SUMS

We consider site-diluted systems of Ising magnetic di-
poles in a cubic box of L3 sites on a SC lattice. All dipoles
point along the z axis of the lattice. Each site is occupied
with probability x. We assume thermal equilibrium. We show
two things in this appendix. We first show that the contribu-
tion �h to the magnetic field h at the center of such box,
coming from a periodic arrangement of replicas that span all
space beyond the system of interest �the “outer space”�
within an arbitrarily large cube which is centered on the sys-
tem of interest, vanishes as L→� if the system is not in a
ferromagnetic phase or close to its Curie temperature. More
specifically, we show that if �sisj�− �si��sj� is short ranged
and the system is homogeneous �including antiferromagneti-
cally ordered states� then

��h2� → 0 �A1�

as L→�, where �¯ � stands for an average over both a
canonical ensemble and �site occupation� disorder. Note that
we are not imposing the condition that �sisj�2− �si�2�sj�2 be
short ranged, and recall �1� that, in general, 
 j�sisj�
− �si��sj�=T�m, where �m is the magnetic susceptibility per
site and �2� that T�m
1 for spin glasses. Equation �A1�
clearly indicates that thermodynamic limits can be obtained
from Monte Carlo calculations for systems of various sizes
in which contributions from the outer space are disregarded.
Finally, explicit numerical evidence, Fig. 15, to this effect is
also given.

To begin, let h=
 jTijsj ��h=
 jTijsj� be the sum is over
all occupied sites within �outside� a cubic box of L�L�L
sites, centered on i. Therefore

�h2 = 

n,m

TinTimsnsm, �A2�

where the double sum is over all occupied sites in the outer
space. Let
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(T/Tsg-1) L

1/ν
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/L

L=4
L=6
L=8
L=10
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FIG. 14. �Color online� �a� Semilog plots of �L /L versus
�T /Tsg−1�L1/ for x=0.35, Tsg=0.345, =0.95, and the shown val-
ues of L. �b� Same as in �a� but for x=0.20, Tsg=0.21, =0.95, and
the shown values of L. Recall that scaling is expected only for
T /Tsg−1	0. In both panels, all error bars are somewhat smaller
than the icon sizes.
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f�rn� = 

j

�aa3

�rn + Rj�3
1 −

3�zn + Zj�2

�rn + Rj�2
� , �A3�

where Rj is the position of the outer jth box, rn is the nth
site’s position with respect to the center of the box, and the
sum is over all outer boxes. Equation �A2� then becomes

�h2 = 

n,m

f�rn�f�rm�snsm, �A4�

where the sum is over all occupied sites within our system of
interest. We now replace sn by �sn�+�sn, and similarly for sm,

in the equation above. Now, it can be checked straightfor-
wardly �i� that 
mf�rm��sn�=0 if �sn� is either independent of
n �which would not hold for a ferromagnet with domains�
and �ii� that 
mf�rm��sn�→0 as L→� if �sn� follows an an-
tiferromagnetic order �which, for up and down spins with
dipolar interactions on a SC lattice, is a checkerboardlike
arrangement of up and down ferromagnetic columns�. Per-
forming thermal and disorder averages over the above equa-
tion, one then obtains

��h2� → 

n,m

f�rn�f�rm���sn�sm� �A5�

as L→�. Now, f�r� varies smoothly within the system,
whence

��h2� → 

n

�f�rn�	2

m

��sn�sm� �A6�

if ��sn�sm��0 unless �rn−rm��L. Finally, 
n�f�rn�	2

=xb�a
2 /L3, where b�7.6 if L�1, as follows straightfor-

wardly by numerical integration. Replacement of 
m��sn�sm�
by T�m gives Eq. �A1� if T�m is finite. For all the parameters
used in our MC calculations, we have found that T�m
1.

The difference ��L /L between the correlation lengths we
report and the ones obtained when Ewald sums49 are in-
cluded, for two system sizes, are exhibited in Fig. 15. The
same sample realizations were used for the calculations with
and without Ewald sums. This explains why we can show in
Fig. 15 values for ��L /L that are smaller than the statistical
errors given for �L /L �see Fig. 12� for L=6. The results are
clearly consistent with a ��L /L that vanishes in the thermo-
dynamic limit.
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