333 research outputs found

    A comparison of mitochondrial DNA isolation methods in frozen post-mortem human brain tissue--applications for studies of mitochondrial genetics in brain disorders

    Get PDF
    Given that many brain disorders are characterized by mitochondrial dysfunction, there is a growing interest in investigating genetic and epigenetic variation in mitochondrial DNA (mtDNA). One major caveat for such studies is the presence of nuclear-mitochondrial pseudogenes (NUMTs), which are regions of the mitochondrial genome that have been inserted into the nuclear genome over evolution and, if not accounted for, can confound genetic studies of mtDNA. Here we provide the first systematic comparison of methods for isolating mtDNA from frozen post-mortem human brain tissue. Our data show that a commercial method from Miltenyi Biotec, which magnetically isolates mitochondria using antibodies raised against the mitochondrial import receptor subunit TOM22, gives significant mtDNA enrichment and should be considered the method of choice for mtDNA studies in frozen brain tissue.Alzheimer's Research U

    A Role for Fibrillar Collagen Deposition and the Collagen Internalization Receptor Endo180 in Glioma Invasion

    Get PDF
    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and most malignant of astrocytic brain tumors, and is associated with rapid invasion into neighboring tissue. In other tumor types it is well established that such invasion involves a complex interaction between tumor cells and locally produced extracellular matrix. In GBMs, surprisingly little is known about the associated matrix components, in particular the fibrillar proteins such as collagens that are known to play a key role in the invasion of other tumor types.In this study we have used both the Masson's trichrome staining and a high resolution multiple immunofluorescence labeling method to demonstrate that intratumoral fibrillar collagens are an integral part of the extracellular matrix in a subset of GBMs. Correlated with this collagen deposition we observed high level expression of the collagen-binding receptor Endo180 (CD280) in the tumor cells. Further, interrogation of multiple expression array datasets identified Endo180 as one of the most highly upregulated transcripts in grade IV GBMs compared to grade III gliomas. Using promoter analysis studies we show that this increased expression is, in part, mediated via TGF-β signaling. Functionally, we demonstrate that Endo180 serves as the major collagen internalization receptor in GBM cell lines and provide the first evidence that this activity is critical for the invasion of GBM cells through fibrillar collagen matrices.This study demonstrates, for the first time, that fibrillar collagens are extensively deposited in GBMs and that the collagen internalization receptor Endo180 is both highly expressed in these tumors and that it serves to mediate the invasion of tumor cells through collagen-containing matrices. Together these data provide important insights into the mechanism of GBM invasion and identify Endo180 as a potential target to limit matrix turnover by glioma cells and thereby restrict tumor progression

    Erratum to: Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    This is the final version. Available from BMC via the DOI in this record.The article to which this is the erratum is in ORE at: http://hdl.handle.net/10871/2029

    Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer's disease neuropathology

    Get PDF
    Introduction Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. Methods We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). Results We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10−18). Discussion We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation

    Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood

    Get PDF
    notes: PMCID: PMC3446315© 2012 Davies et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors

    Influence of coding variability in APP-Aβ metabolism genes in sporadic Alzheimer’s disease

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 <p-value <0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.This study was supported by the Alzheimer's Research UK, the Medical Research Council (MRC), the Wellcome Trust/MRC Joint Call in Neurodegeneration Award (WT089698) to the UK Parkinson's Disease Consortium (whose members are from the University College London Institute of Neurology, the University of Sheffield, and the MRC Protein Phosphorylation Unit at the University of Dundee), grants (P50 AG016574, U01 AG006786, and R01 AG18023), the National Institute for Health Research Biomedical Research Unit in Dementia at University College London Hospitals, University College London; the Big Lottery (to Dr. Morgan); a fellowship from Alzheimer's Research UK (to Dr. Guerreiro); and the Intramural Research Programs of the National Institute on Aging and the National Institute of Neurological Disease and Stroke, National Institutes of Health (Department of Health and Human Services Project number, ZO1 AG000950-10). The MRC London Neurodegenerative Diseases Brain Bank and the Manchester Brain Bank from Brains for Dementia Research are jointly funded from ARUK and AS. Tissue samples were supplied by The London Neurodegenerative Diseases Brain Bank, which receives funding from the MRC and as part of the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK and Alzheimer’s Society

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD

    Neuron-specific alterations in signal transduction pathways associated with Alzheimer's disease

    Get PDF
    The hallmarks of sporadic Alzheimer's disease (AD) are extracellular amyloid deposits, intracellular neurofibrillary tangles (NFTs), and neuronal death. Hyperphosphorylation of tau is a key factor in the generation of NFTs. Mitogen activated protein kinase 1 (MAPK1) and protein kinase C beta (PRKCB) are thought to play a role in hyperphosphorylation, and PRCKB is thought to be involved in hypoxic stress and vascular dysfunction, and to trigger MAPK phosphorylation pathways. We performed single-cell analyses of neurons with different vulnerabilities to AD-related changes. Using quantitative PCR (qPCR), we measured the levels of MAPK1 and PRKCB transcript in CA1 (high vulnerability), CA2 pyramidal cells from the hippocampus, granule cells from the cerebellum (low vulnerability), and neurons from the brain stem (nucleus tractus spinalis nervi trigemini, characterized by early neurophysiological deficits) at progressive Braak stages compared to age-matched controls. The highly vulnerable CA1 pyramidal neurons were characterized by age- and disease-unrelated increases in PRCKB levels and by age- and disease-related increases in MAPK1 levels. In contrast, low PRKCB levels were found in CA2 pyramidal neurons, and MAPK1 levels were elevated in controls and intermediate AD stages. Both PRKCB and MAPK1 were increased in the late AD stages. MAPK1 and PRKCB levels were low in the brainstem and cerebellum. We propose that alterations in the expression of these two genes occur early in the pathogenesis of AD in a region-specific manner. In addition, multiple signal transduction pathways need to be affected to result in AD instead of physiological aging
    • …
    corecore