17 research outputs found

    Agro-Morphological, Yield and Quality Traits and Interrelationship with Yield Stability in Quinoa (Chenopodium quinoa Willd.) Genotypes under Saline Marginal Environment

    Get PDF
    Quinoa (Chenopodium quinoa Willd.) is a halophytic crop that shows resistance to multiple abiotic stresses, including salinity. In this study we investigated the salinity tolerance mechanisms of six contrasting quinoa cultivars belonging to the coastal region of Chile using agro-physiological parameters (plant height (PH), number of branches/plant (BN), number of panicles/plant (PN), panicle length (PL), biochemical traits (leaf C%, leaf N%, grain protein contents); harvest index and yield (seed yield and plant dry biomass (PDM) under three salinity levels (0, 10, and 20 d Sm-1 NaCl). The yield stability was evaluated through comparision of seed yield characteristics [(static environmental variance (S-2) and dynamic Wricke's ecovalence (W-2)]. Results showed that significant variations existed in agro-morphological and yield attributes. With increasing salinity levels, yield contributing parameters (number of panicles and panicle length) decreased. Salt stress reduced the leaf carbon and nitrogen contents. Genotypes Q21, and AMES13761 showed higher seed yield (2.30 t ha(-1)), more productivity and stability at various salinities as compared to the other genotypes. Salinity reduced seed yield to 44.48% and 60% at lower (10 dS m(-1)) and higher salinity (20 dS m(-1)), respectively. Grain protein content was highest in NSL106398 and lowest in Q29 when treated with saline water. Seed yield was positively correlated with PH, TB, HI, and C%. Significant and negative correlations were observed between N%, protein contents and seed yield. PH showed significant positive correlation with APL, HI, C% and C:N ratio. HI displayed positive correlations with C%, N% and protein content., All measured plant traits, except for C:N ratio, responded to salt in a genotype-specific way. Our results indicate that the genotypes (Q21 and AMES13761) proved their suitability under sandy desert soils of Dubai, UAE as they exhibited higher seed yield while NSL106398 showed an higher seed protein content. The present research highlights the need to preserve quinoa biodiversity for a better seedling establishment, survival and stable yield in the sandy desertic UAE environment

    Assessment of Different Tannin Extracts on Avian Pathogenic Escherichia coli Metabolites Using Nuclear Magnetic Resonance

    Get PDF
    Tannins have been demonstrated to inhibit the growth of several chicken illnesses in vitro. The complex compositions of tannins make it difficult for microorganisms to develop bacterial resistance. This study aimed to evaluate the effect of condensed tannins (CT) extracts on metabolic profile of Avian Pathogenic Escherichia coli (APEC) using Nuclear Magnetic Resonance (1H-NMR). The experimental groups were divided into three groups:control (no CT added), high in procyanidins (PC-CT) group, and high in prodelphinidins (PDCT) group, with exposure times of 0, 10, and 24 h. APEC was observed to respond to CT extracted from Tilia flowers (high PC-CT) and black locust leaves (high PD-CT). The levels of amino acids including lysine, leucine, glutamate, phenylalanine, and pyroglutamate were increased with the high PD-CT treatment; however, no significant differences were observed between the PC-CT group and the control. Treatment of APEC culture with high PD-CT also led to a significant decrease in the level of lactate. Thus, high PD-CT affected these metabolisms and could be exploited to control the proliferation of APEC in poultry, thereby improving their health and performance

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Genotypic variation for salinity tolerance in Cenchrus ciliaris L

    Get PDF
    Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L.) accessions for three consecutive years (2003-2005). The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m-1). The results indicate that the average annual dry weights (DW) were in the range from 122.5 – 148.9 g pot-1 in control; 96.4 – 133.8 g pot-1 at 10 dS m-1; 65.6 – 80.4 g pot-1 at 15 dS m-1, and 55.4- 65.6 g pot-1 at 20 dS m-1. The highest DW (148.9 g pot-1) was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8 % of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal land and arid regions to enhance farm productivity and reduce rural poverty

    Agro-morphological, yield and quality traits and interrelationship with yield stability in Quinoa (Chenopodium quinoa willd.) genotypes under saline marginal environment

    Get PDF
    Quinoa (Chenopodium quinoa Willd.) is a halophytic crop that shows resistance to multiple abiotic stresses, including salinity. In this study we investigated the salinity tolerance mechanisms of six contrasting quinoa cultivars belonging to the coastal region of Chile using agro-physiological parameters (plant height (PH), number of branches/plant (BN), number of panicles/plant (PN), panicle length (PL), biochemical traits (leaf C%, leaf N%, grain protein contents); harvest index and yield (seed yield and plant dry biomass (PDM) under three salinity levels (0, 10, and 20 d Sm−1 NaCl). The yield stability was evaluated through comparision of seed yield characteristics [(static environmental variance (S2) and dynamic Wricke’s ecovalence (W2)]. Results showed that significant variations existed in agro-morphological and yield attributes. With increasing salinity levels, yield contributing parameters (number of panicles and panicle length) decreased. Salt stress reduced the leaf carbon and nitrogen contents. Genotypes Q21, and AMES13761 showed higher seed yield (2.30 t ha−1), more productivity and stability at various salinities as compared to the other genotypes. Salinity reduced seed yield to 44.48% and 60% at lower (10 dS m−1) and higher salinity (20 dS m−1), respectively. Grain protein content was highest in NSL106398 and lowest in Q29 when treated with saline water. Seed yield was positively correlated with PH, TB, HI, and C%. Significant and negative correlations were observed between N%, protein contents and seed yield. PH showed significant positive correlation with APL, HI, C% and C:N ratio. HI displayed positive correlations with C%, N% and protein content., All measured plant traits, except for C:N ratio, responded to salt in a genotype-specific way. Our results indicate that the genotypes (Q21 and AMES13761) proved their suitability under sandy desert soils of Dubai, UAE as they exhibited higher seed yield while NSL106398 showed an higher seed protein content. The present research highlights the need to preserve quinoa biodiversity for a better seedling establishment, survival and stable yield in the sandy desertic UAE environment.International Fund for Agricultural Development | Ref. ICBA/7583011A

    Smart buildings features and key performance indicators: A review

    No full text
    The concept of Smart Buildings was introduced by the Energy Performance Building Directive, with the aim to promote energy flexibility, renewable energy production and user interaction. A wide range of definitions have been introduced in the literature to characterize smart buildings yet, at present, its’ concept and features are not clearly and uniquely defined. Simultaneously, building energy retrofit concept has been introduced to facilitate achieving the nearly Zero-Energy Building target and reduce energy consumption in existing buildings. Up to 90 % of the existing European building stock will still be standing and in use in 2050. Thus, there is a need to upgrade the existing retrofitting strategies into Smart Retrofitting, to achieve the nearly Zero Energy Building target and be able to respond to external dynamic conditions such as the weather and the grid. The aim of this research is first to review the concept of smartness in the built environment, highlighting the main features, functions, and technologies of smart buildings, also discussing the possible challenges for smart retrofit applications. The second part of the paper reviews the existing Key Performance Indicators that measure the performance and success in achieving goals in smart buildings. The need to develop a quantified guideline to improve energy and technological innovation is the basis for the increase of the smartness in buildings. Consequently, a set of nine groups of representative performance indicators for smart buildings is developed. This work shows current gaps in the literature and highlights the space for foreseeable future research
    corecore