152 research outputs found

    Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization

    Get PDF
    Retinal ischemia and pathological angiogenesis cause severe impairment of sight. Oxygen-induced retinopathy (OIR) in young mice is widely used as a model to investigate the underlying pathological mechanisms and develop therapeutic interventions. We compared directly the conventional OIR model (exposure to 75% O-2 from postnatal day (P) 7 to P12) with an alternative, accelerated version (85% O-2 from P8 to P11). We found that accelerated OIR induces similar pre-retinal neovascularization but greater retinal vascular regression that recovers more rapidly. The extent of retinal gliosis is similar but neuroretinal function, as measured by electroretinography, is better maintained in the accelerated model. We found no systemic or maternal morbidity in either model. Accelerated OIR offers a safe, reliable and more rapid alternative model in which pre-retinal neovascularization is similar but retinal vascular regression is greater

    Leveraging Experiential Learning to Foster University Students’ Proficiency in Engaging with People with Disabilities

    Get PDF
    Study purpose. Inclusive education, acknowledged as a fundamental human right, is aimed at enhancing the participation of all students and mitigating social and educational exclusion. Physical Education is identified as a vital instrument that fosters specific training on disability and inclusion, thereby ameliorating attitudes towards disability. The objective of this study is to scrutinize the perception of experiential learning and inclusive physical activity among students. Materials and methods. An inclusive physical activity program for students pursuing a degree in Early Childhood and Primary Education was designed. The program proposes five sessions of inclusive physical activity and accommodates 30 adult users with intellectual disability. To analyse the reliability and validity of a scale that measures students’ perception of experiential learning, descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis were used to assess the effectiveness and inclusivity of the scale. Results. The validity and reliability of a scale that facilitates the analysis of students’ perceptions of learning derived from inclusive experiences is presented and the results are adequate for its usability. In addition, it is shown that experiential learning increases the perception towards the acquisition of disability-related competences among university students. Conclusions. This scale essentially allows a comprehensive analysis of students’ perception of learning that emerges from inclusive experiences. It is demonstrated that experiential learning enhances students’ perception regarding the attainment of competencies related to disability. These findings underscore the importance of inclusive learning experiences in the training of future educators

    Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65

    Get PDF
    Leber congenital amaurosis is a group of inherited retinal dystrophies that cause severe sight impairment in childhood; RPE65-deficiency causes impaired rod photoreceptor function from birth and progressive impairment of cone photoreceptor function associated with retinal degeneration. In animal models of RPE65 deficiency, subretinal injection of recombinant adeno-associated virus (AAV) 2/2 vectors carrying RPE65 cDNA improves rod photoreceptor function, and intervention at an early stage of disease provides sustained benefit by protecting cone photoreceptors against retinal degeneration. In affected humans, administration of these vectors has resulted to date in relatively modest improvements in photoreceptor function, even when retinal degeneration is comparatively mild, and the duration of benefit is limited by progressive retinal degeneration. We conclude that the demand for RPE65 in humans is not fully met by current vectors, and predict that a more powerful vector will provide more durable benefit. With this aim we have modified the original AAV2/2 vector to generate AAV2/5-OPTIRPE65. The new configuration consists of an AAV vector serotype 5 carrying an optimized hRPE65 promoter and a codon-optimized hRPE65 gene. In mice, AAV2/5-OPTIRPE65 is at least 300-fold more potent than our original AAV2/2 vector

    Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

    Get PDF
    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration

    Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

    Get PDF
    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration

    Innovative Strategies for Ozone Treatment of Industrial Wastes: Hydrothermal Liquefaction of Surfactant Wastewater and Leacheate Evaporation

    Get PDF
    In this paper, ozonation is used as a pre-treatment for two different kinds of wastewaters. The first purpose is the study of the effect of ozonation on a landfill leachate treated by a reverse osmosis process prior a concentration step in an atmospheric evaporator. At first sight, an ozone treatment can supply three effects: Defoaming capacity, biocide effect, and pH acidifier to avoid the ammonia striping in the evaporation process. The second purpose of this paper is regarding hydrothermal liquefaction (HTL) of wastewaters. HTL can produce a liquid fuel, normally called crude-oil, alternative to fossil fuels, as well as other products of industrial interest (phenols, furfurals, etc.). The second objective is the study of the possible positive effect that a pre-treatment with ozone can have on the performance of the subsequent HTL. In this work, HTL is applied to liquid surfactant wastes obtaining up to 7% crude-oil yield, with a High Heating Value (HHV) higher than 8.000 cal/g. These results are compared with those obtained when an ozonation pre-treatment is applied before the HTL process. Ozone treatment shows a slight defoaming capacity for the leachate feed but don’t seem to show a significant difference in the HHV of the crude-oils obtained from liquid surfactant. However, there is a noticeable difference in the solid residue generated for this later. Less aggregates of solid particles and a weight reduction of 20% in the filtering step were obtained from ozonated liquid surfactants. The reduction of solid by-products is of great interest for dimensioning an industrial-scale HTL plant due to the problems that these solids can generate in pipes and valves

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Spanish cardiac catheterization in congenital heart diseases registry. First official report from the ACI-SEC and the GTH-SECPCC (2020)

    Full text link
    Introduction and objectives: The Interventional Cardiology Association of the Spanish Society of Cardiology (ACI-SEC) and the Spanish Society of Pediatric Cardiology Working Group on Interventional Cardiology (GTH-SECPCC) introduce their annual activity report for 2020, the starting year of the pandemic of coronavirus disease (COVID-19). Methods: All Spanish centers with cath labs and interventional activity in congenital heart diseases were invited to participate. Data were collected online, and analyzed by an external company together with members from the ACI-SEC and the GTH-SECPCC. Results: A total of 16 centers participated (all of them public) including 30 cath labs experienced in the management of congenital heart diseases, 7 of them (23.3%) dedicated exclusively to pediatric patients. A total of 1046 diagnostic studies, and 1468 interventional cardiac catheterizations were registered. The interventional procedures were considered successful in 93.4% of the cases with rates of major procedural complications and mortality of 2%, and 0.1%, respectively. The most frequent procedures were atrial septal defect closure (377 cases), pulmonary angioplasty (244 cases), and the percutaneous closure of the patent ductus arteriosus (199 cases). Conclusions: This report is the first publication from the Spanish Cardiac Catheterization in Congenital Heart Diseases Registry. The data recorded are conditioned by the COVID-19 pandemic. Diagnostic cardiac catheterization still plays a key role in this field. Most interventional techniques have reported excellent security and efficacy rates

    Prevention of Photoreceptor Cell Loss in a Cln6nclf Mouse Model of Batten Disease Requires CLN6 Gene Transfer to Bipolar Cells

    Get PDF
    The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclfmice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment
    corecore