271 research outputs found

    Produção de grãos em relação com reação a doenças em feijoeiro comum cultivado em sistema de manejo orgânico.

    Get PDF
    Este trabalho objetivou avaliar a produção de grãos do feijoeiro-comum em sistema de manejo orgânico e os efeitos do crestamento bacteriano comum e da mancha angular sobre a produção do feijoeiro-comum da cultivar BRS supremo sob diferentes tipos de cultura de cobertura e manejo do solo.CONAFE

    Foliar treatments as a strategy to control iron chlorosis in orange trees

    Get PDF
    Different foliar treatments were applied to evaluate the recovery of iron chlorosis of orange trees (Citrus sinensis (L.) Osb. cv. 'Valencia late') grown on a calcareous soil. The treatments were: Fe (II) sulphate (500 mg Fe L-1), sulphuric acid (0.5 mM H2SO4), Fe (III)-chelate (Hampiron 654 GS, 120 mg Fe L-1) and distilled water as a control. The recovery from iron chlorosis was evaluated with the SPAD-502 apparatus and the values converted to total chlorophyll concentration. The effects of treatments on the mineral composition of leaves and flowers, and the size and quality of fruits were evaluated. The residual effect of treatments was also evaluated one year later. In orange trees, the use of frequent foliar sprays with Fe was able to alleviate Fe chlorosis and prevented yield and quality losses caused by Fe chlorosis. Compared with the control, sprays of Fe (II) sulphate led to higher concentrations of chlorophyll, Fe and Zn in leaves and flowers at the end of the experimental period, and significantly improved fruit size and quality. Leaf Fe concentration increased after the sulphuric acid spray, but this treatment did not affect fruit quality parameters. The mineral composition of flowers and leaves was correlated with some fruit quality parameters obtained one year later. These results suggest that foliar sprays with Fe could help to avoid fruit quality losses caused by Fe chlorosis in citrus orchards

    Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying

    Get PDF
    A combined scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and density functional theory study of graphene on a Fe-Ir(111) alloy with variable Ir concentration is presented. Starting from an intercalated Fe layer between the graphene and Ir(111) surface we find that graphene-substrate interaction can be fine-tuned by Fe-Ir alloying at the interface. When a critical Ir-concentration close to 0.25 is reached in the Fe layer, the Dirac cone of graphene is largely restored and can thereafter be tuned across the Fermi level by further increasing the Ir content. Indeed, our study reveals an abrupt transition between a chemisorbed phase at small Ir concentrations and a physisorbed phase above the critical concentration. The latter phase is highly reminiscent of the graphene on the clean Ir(111) surface. Furthermore, the transition is accompanied by an inversion of the graphene''s induced magnetization due to the coupling with the Fe atoms from antiferromagnetic when chemisorbed to weakly ferromagnetic in the physisorption regime, with spin polarizations whose magnitude may be tuned with the amount of Fe content

    Low-Power consumption Franz-Keldysh effect plasmonic modulator

    Get PDF
    In this paper we report on a low energy consumption CMOS-compatible plasmonic modulator based on Franz-Keldysh effect in germanium on silicon. We performed integrated electro-optical simulations in order to optimize the main characteristics of the modulator. A 3.3 dB extinction ratio for a 30 µm long modulator is demonstrated under 3 V bias voltage at an operation wavelength of 1647 nm. The estimated energy consumption is as low as 20 fJ/bit

    Interplay between steps and oxygen vacancies on curved TiO2(110)

    Get PDF
    et al.A vicinal rutile TiO(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (O vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (S) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of O vacs plus S protrusions at steps, suggesting that both O vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti polaron near steps and at terraces.We acknowledge financial support from the Spanish Ministry of Economy (Grants MAT2013-46593-C6-4-P and MAT2013-46593-C6-2-P) and the Basque Government (Grant IT621-13 and IT756-13). M.S. and U.D. acknowledge support from the ERC Advanced Grant “OxideSurfaces”. D.S.P. and M.M. acknowledge support from the Marie Curie ITN “THINFACE” and financial support by the Deutsche Forschungsgemeinschaft. through SFB 1083 “Structure and Dynamics of Internal Interfaces”.Peer Reviewe

    Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT

    Get PDF
    Objective: To evaluate the feasibility of dual-energy CT (DECT)-based iodine quantification to estimate myocardial extracellular volume (ECV) fraction in patients with and without cardiomyopathy (CM), as well as to assess its ability to distinguish healthy myocardial tissue from cardiomyopathic, with the goal of defining a threshold ECV value for disease detection. Methods: Ten subjects free of heart disease and 60 patients with CM (mean age 66.4 ± 9.4; 59 males and 11 females; 40 ischemic and 20 non-ischemic CM) underwent late iodine enhanced DECT imaging. Myocardial iodine maps were obtained using 3-material decomposition. ECV of the left ventricle was estimated from hematocrit levels and the iodine maps using the AHA 16-segment model. Receiver operating characteristic curve analysis was performed, with corresponding area under the curve, along with Youden's index assessment, to establish a threshold for CM detection. Results: The median ECV for healthy myocardium, non-ischemic CM, and ischemic CM were 25.4% (22.9–27.3), 38.3% (33.7–43.0), and 36.9% (32.4–41.1), respectively. Healthy myocardium showed significantly lower ECV values compared to ischemic and non-ischemic CM (p 29.5% would indicate the presence of CM in the myocardium (sensitivity = 90.3; specificity = 90.3); the AUC for this criterion was 0.950 (p < 0.001). Conclusion: The findings of this study resulted in a statistically significant distinction between healthy myocardium and CM ECVs. This led to the establishment of a promising threshold ECV value that could facilitate the differentiation between healthy and diseased myocardium, and highlights the potential of this DECT methodology to detect cardiomyopathic tissue

    Monitoring UF membrane performance treating surface-groundwater blends: limitations of FEEM-PARAFAC on the assessment of the organic matter role

    Get PDF
    The decrease of water quantity and quality in water scarcity areas is palliated by improving water treatments with membrane technologies. System performance and efficiency, and then cost, is mainly affected by membrane fouling, which is still not well understood and controlled appropriately. In this study, the influence of content and composition of dissolved organic matter (DOM) on a membrane ultrafiltration (UF) stage from a full-scale UF stage in a drinking water treatment plant (DWTP) fed with surface water, groundwater (or blends of them) was investigated. Excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was used to characterize and assess DOM changes in water samples Water streams feeding the UF stage showed high variability in DOM content and composition. FEEM-PARAFAC analysis allowed the differentiation of seven different organic components. Additionally to the characterization and monitoring of DOM in the full-scale UF stage, a bench scale UF pilot was run to experimentally correlate the impact of water quality with membrane performance. The experiments included testing synthetic solutions of model foulants (synthetic humic acid and bovine serum albumin) and blends of complex waters. To quantify fouling, the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI) were calculated for each filtration run. According to the results obtained, the correlation plots between the PARAFAC components and the fouling indices pointed at microbial byproducts (C1) and humic-like components (C2, C4, C5) as the ones showing higher correlations

    A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    Get PDF
    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type
    corecore