2,034 research outputs found

    Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions

    Full text link
    We examine a spin torque induced by the Rashba spin-orbit coupling in three dimensions within the Boltzmann transport theory. We analytically calculate the spin torque and show how its behavior is related with the spin topology in the Fermi surfaces by studying the Fermi-energy dependence of the spin torque. Moreover we discuss the spin-torque efficiency which is the spin torque divided by the applied electric current in association with the current-induced magnetization reversal. It is found that high spin-torque efficiency is achieved when the Fermi energy lies on only the lower band and there exists an optimal value for the Rashba parameter, where the spin-torque efficiency becomes maximum.Comment: 7 pages, 5 figure

    Per argumentum a fortiori

    Get PDF

    High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy

    Full text link
    Current-induced domain wall (DW) displacements in an array of ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly observed by wide field Kerr microscopy. DWs in all wires in the array were driven simultaneously and their displacement on the micrometer-scale was controlled by the current pulse amplitude and duration. At the lower current densities where DW displacements were observed (j less than or equal to 1.5 x 10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j = 1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were recorded.Comment: Minor changes to Fig. 1(b) and text, correcting for the fact that domain walls were subsequently found to move counter to the electron flow. References update

    Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

    Full text link
    We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material

    Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    Get PDF
    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.Comment: 37 page

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Get PDF
    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface

    Finsler and Lagrange Geometries in Einstein and String Gravity

    Full text link
    We review the current status of Finsler-Lagrange geometry and generalizations. The goal is to aid non-experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kahler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of ''orthodox'' physicists. Although the bulk of former models of Finsler-Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modelled equivalently on Riemann-Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration. We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/ Kahler, or nonholonomic Riemann spaces. Finally, we consider some classes of exact solutions in string and Einstein gravity modelling Lagrange-Finsler structures with solitonic pp-waves and speculate on their physical meaning.Comment: latex 2e, 11pt, 44 pages; accepted to IJGMMP (2008) as a short variant of arXiv:0707.1524v3, on 86 page

    The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry

    Get PDF
    The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.Comment: Main text and Supplementary Information, 33 pages and 12 figure
    corecore