4,128 research outputs found

    Acoustic schwannoma of traumatic origin? A temporal bone study

    Get PDF
    A tumour of the singular nerve was found on examination of the temporal bones of a child who died 13 months after meningitis. The tumour consisted of a main mass with the appearance of an acoustic neuroma but close by and not connected were some nests of tumour cells inside the vestibule. This very unusual finding raises questions of the aetiology of this tumour which may have a bearing on the aetiology of other tumours of the VIIIth. nerv

    The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant

    Get PDF
    We present a new selection technique of producing spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at 0.6<zspec<1.0 to obtain a precise baryon acoustic oscillation measurement. Our proposed selection technique is based on optical and near-infrared broad-band filter photometry. We used a training sample to define a quantity, the Fisher discriminant (linear combination of colours), which correlates best with the desired properties of the target: redshift and [OII] flux. The proposed selections are simply done by applying a cut on magnitudes and this Fisher discriminant. We used public data and dedicated SDSS spectroscopy to quantify the redshift distribution and [OII] flux of our ELG target selections. We demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift requirements: for a target density of 180 deg^2, ~70% of the selected objects have 0.6<zspec<1.0 and only ~1% of those galaxies in the range 0.6<zspec<1.0 are expected to have a catastrophic zspec estimate. Additionally, the stacked spectra and stacked deep images for those two selections show characteristic features of star-forming galaxies. The proposed approach using the Fisher discriminant could, however, be used to efficiently select other galaxy populations, based on multi-band photometry, providing that spectroscopic information is available. This technique could thus be useful for other future massive spectroscopic surveys such as PFS, DESI, and 4MOST.Comment: Version published in A&

    The Luminosity Function of Early-Type Galaxies at z~0.75

    Full text link
    We measure the luminosity function of morphologically selected E/S0 galaxies from z=0.5z=0.5 to z=1.0z=1.0 using deep high resolution Advanced Camera for Surveys imaging data. Our analysis covers an area of 48\Box\arcmin (8×\times the area of the HDF-N) and extends 2 magnitudes deeper (I24I\sim24 mag) than was possible in the Deep Groth Strip Survey (DGSS). At 0.5<z<0.750.5<z<0.75, we find MB5logh0.7=21.1±0.3M_B^*-5\log h_{0.7}=-21.1\pm0.3 and α=0.53±0.2\alpha=-0.53\pm0.2, and at 0.75<z<1.00.75<z<1.0, we find MB5logh0.7=21.4±0.2M_B^*-5\log h_{0.7}=-21.4\pm0.2. These luminosity functions are similar in both shape and number density to the luminosity function using morphological selection (e.g., DGSS), but are much steeper than the luminosity functions of samples selected using morphological proxies like the color or spectral energy distribution (e.g., CFRS, CADIS, or COMBO-17). The difference is due to the `blue', (UV)0<1.7(U-V)_0<1.7, E/S0 galaxies, which make up to 30\sim30% of the sample at all magnitudes and an increasing proportion of faint galaxies. We thereby demonstrate the need for {\it both morphological and structural information} to constrain the evolution of galaxies. We find that the `blue' E/S0 galaxies have the same average sizes and Sersic parameters as the `red', (UV)0>1.7(U-V)_0>1.7, E/S0 galaxies at brighter luminosities (MB<20.1M_B<-20.1), but are increasingly different at fainter magnitudes where `blue' galaxies are both smaller and have lower Sersic parameters. Fits of the colors to stellar population models suggest that most E/S0 galaxies have short star-formation time scales (τ<1\tau<1 Gyr), and that galaxies have formed at an increasing rate from z8z\sim8 until z2z\sim2 after which there has been a gradual decline.Comment: 39 pages, 21 figures, accepted in A

    Discovery of Globular Clusters in the Proto-Spiral NGC2915: Implications for Hierarchical Galaxy Evolution

    Full text link
    We have discovered three globular clusters beyond the Holmberg radius in Hubble Space Telescope Advanced Camera for Surveys images of the gas-rich dark matter dominated blue compact dwarf galaxy NGC2915. The clusters, all of which start to resolve into stars, have M_{V606} = -8.9 to -9.8 mag, significantly brighter than the peak of the luminosity function of Milky Way globular clusters. Their colors suggest a metallicity [Fe/H] ~ -1.9 dex, typical of metal-poor Galactic globular clusters. The specific frequency of clusters is at a minimum normal, compared to spiral galaxies. However, since only a small portion of the system has been surveyed it is more likely that the luminosity and mass normalized cluster content is higher, like that seen in elliptical galaxies and galaxy clusters. This suggests that NGC2915 resembles a key phase in the early hierarchical assembly of galaxies - the epoch when much of the old stellar population has formed, but little of the stellar disk. Depending on the subsequent interaction history, such systems could go on to build-up larger elliptical galaxies, evolve into normal spirals, or in rare circumstances remain suspended in their development to become systems like NGC2915.Comment: ApJ Letters accepted; 6 pages, 2 figures, 3 table

    Advanced Camera for Surveys Observations of Young Star Clusters in the Interacting Galaxy UGC 10214

    Full text link
    We present the first Advanced Camera for Surveys (ACS) observations of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as part of the Early Release Observation (ERO) program for the newly installed ACS during service mission SM3B for the Hubble Space Telescope (HST). Many young star clusters can be identified in the tails of UGC 10214, with ages ranging from ~3 Myr to 10 Myr. The extreme blue V-I (F606W-F814W) colors of the star clusters found in the tail of UGC 10214 can only be explained if strong emission lines are included with a young stellar population. This has been confirmed by our Keck spectroscopy of some of these bright blue stellar knots. The most luminous and largest of these blue knots has an absolute magnitude of M_V = -14.45, with a half-light radius of 161 pc, and if it is a single star cluster, would qualify as a super star cluster (SSC). Alternatively, it could be a superposition of multiple scaled OB associations or clusters. With an estimated age of ~ 4-5 Myr, its derived mass is < 1.3 x 10^6 solar masses. Thus the young stellar knot is unbound and will not evolve into a normal globular cluster. The bright blue clusters and associations are much younger than the dynamical age of the tail, providing strong evidence that star formation occurs in the tail long after it was ejected. UGC 10214 provides a nearby example of processes that contributed to the formation of halos and intra-cluster media in the distant and younger Universe.Comment: 6 pages with embedded figures, ApJ in pres

    Internal Color Properties of Resolved Spheroids in the Deep HST/ACS field of UGC 10214

    Full text link
    (Abridged) We study the internal color properties of a morphologically selected sample of spheroidal galaxies taken from HST/ACS ERO program of UGC 10214 (``The Tadpole''). By taking advantage of the unprecedented high resolution of the ACS in this very deep dataset we are able to characterize spheroids at sub-arcseconds scales. Using the V_606W and I_814W bands, we construct V-I color maps and extract color gradients for a sample of spheroids at I_814W < 24 mag. We investigate the existence of a population of morphologically classified spheroids which show extreme variation in their internal color properties similar to the ones reported in the HDFs. These are displayed as blue cores and inverse color gradients with respect to those accounted from metallicity variations. Following the same analysis we find a similar fraction of early-type systems (~30%-40%) that show non-homologous internal colors, suggestive of recent star formation activity. We present two statistics to quantify the internal color variation in galaxies and for tracing blue cores, from which we estimate the fraction of non-homogeneous to homogeneous internal colors as a function of redshift up to z<1.2. We find that it can be described as about constant as a function of redshift, with a small increase with redshift for the fraction of spheroids that present strong color dispersions. The implications of a constant fraction at all redshifts suggests the existence of a relatively permanent population of evolving spheroids up to z~1. We discuss the implications of this in the context of spheroidal formation.Comment: Fixed URL for high resolution version. 13 Pages, 10 Figures. Accepted for Publication in ApJ. Sep 1st issue. Higher resolution version and complete table3B at http://acs.pha.jhu.edu/~felipe/e-prints/Tadpol

    The Morphology - Density Relation in z ~ 1 Clusters

    Full text link
    We measure the morphology--density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys on board the Hubble Space Telescope. Simulations and independent comparisons of ourvisually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and z = 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work -- specifically, the growth in the bulge-dominated galaxy fraction, f_E+SO, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and density <= 500 galaxies/Mpc^2, we find = 0.72 +/- 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr galaxies relative to the local galaxy population. The Elliptical fraction - density relation exhibits no significant evolution between z = 1 and z = 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.Comment: 30 pages, 18 figures. Accepted for publication in ApJ. Full resolution versions of figs 2,3,6,8 are available at http://www.stsci.edu/~postman/mdr_figure

    Time spent with cats is never wasted: Lessons learned from feline acromegalic cardiomyopathy, a naturally occurring animal model of the human disease

    Get PDF
    <div><p>Background</p><p>In humans, acromegaly due to a pituitary somatotrophic adenoma is a recognized cause of increased left ventricular (LV) mass. Acromegalic cardiomyopathy is incompletely understood, and represents a major cause of morbidity and mortality. We describe the clinical, echocardiographic and histopathologic features of naturally occurring feline acromegalic cardiomyopathy, an emerging disease among domestic cats.</p><p>Methods</p><p>Cats with confirmed hypersomatotropism (IGF-1>1000ng/ml and pituitary mass; n = 67) were prospectively recruited, as were two control groups: diabetics (IGF-1<800ng/ml; n = 24) and healthy cats without known endocrinopathy or cardiovascular disease (n = 16). Echocardiography was performed in all cases, including after hypersomatotropism treatment where applicable. Additionally, tissue samples from deceased cats with hypersomatotropism, hypertrophic cardiomyopathy and age-matched controls (n = 21 each) were collected and systematically histopathologically reviewed and compared.</p><p>Results</p><p>By echocardiography, cats with hypersomatotropism had a greater maximum LV wall thickness (6.5mm, 4.1–10.1mm) than diabetic (5.9mm, 4.2–9.1mm; Mann Whitney, p<0.001) or control cats (5.2mm, 4.1–6.5mm; Mann Whitney, p<0.001). Left atrial diameter was also greater in cats with hypersomatotropism (16.6mm, 13.0–29.5mm) than in diabetic (15.4mm, 11.2–20.3mm; Mann Whitney, p<0.001) and control cats (14.0mm, 12.6–17.4mm; Mann Whitney, p<0.001). After hypophysectomy and normalization of IGF-1 concentration (n = 20), echocardiographic changes proved mostly reversible. As in humans, histopathology of the feline acromegalic heart was dominated by myocyte hypertrophy with interstitial fibrosis and minimal myofiber disarray.</p><p>Conclusions</p><p>These results demonstrate cats could be considered a naturally occurring model of acromegalic cardiomyopathy, and as such help elucidate mechanisms driving cardiovascular remodeling in this disease.</p></div

    PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope

    Full text link
    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{\mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {\mu}m fibre through a projected sky aperture of 0.74", comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics
    corecore