36,742 research outputs found

    Distinguishing the “Truly National” From the “Truly Local”: Customary Allocation, Commercial Activity, and Collective Action

    Get PDF
    This Essay makes two claims about different methods of defining the expanse and limits of the Commerce Clause. My first claim is that approaches that privilege traditional subjects of state regulation are unworkable and undesirable. These approaches are unworkable in light of the frequency with which the federal government and the states regulate the same subject matter in our world of largely overlapping federal and state legislative jurisdiction. The approaches are undesirable because the question of customary allocation is unrelated to the principal reason why Congress possesses the power to regulate interstate commerce: solving collective action problems involving multiple states. These problems are evident in the way that some federal judges invoked regulatory custom in litigation over the constitutionality of the minimum coverage provision in the Patient Protection and Affordable Care Act. The areas of health insurance and health care are not of exclusive state concern, and it is impossible to lose—or to win—a competition requiring skillful lawyers or judges to describe them as more state than federal, or more federal than state. Nor is it most important what the answer is. More promising are the approaches that view congressional authority as turning on either commercial activity or collective action problems facing the states. My second claim is that these two approaches have advantages and disadvantages, and that the choice between them exemplifies the more general tension between applying rules and applying their background justifications. I have previously defended a collective action approach to Article I, Section 8. My primary purpose in this Essay is to clarify the jurisprudential stakes in adopting one method or the other and to identify the problems that advocates of each approach must address

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films

    Get PDF
    The durations and average speeds of ultrashort optical pulses transmitted through chiral sculptured thin films (STFs) were calculated using a finite-difference time-domain algorithm. Chiral STFs are a class of nanoengineered materials whose microstructure comprises parallel helicoidal nanowires grown normal to a substrate. The nanowires are ∌\sim10-300 nm in diameter and ∌1−10ÎŒ\sim1-10 \mum in length. Durations of transmitted pulses tend to increase with decreasing (free-space) wavelength of the carrier plane wave, while average speeds tend to increase with increasing wavelength. An increase in nonlinearity, as manifested by an intensity-dependent refractive index in the frequency domain, tends to increase durations of transmitted pulses and decrease average speeds. The circular Bragg phenomenon exhibited by a chiral STFs manifests itself in the frequency domain as high reflectivity for normally incident carrier plane waves whose circular polarization state is matched to the structural handedness of the film and whose wavelength falls in a range known as the Bragg regime; films of the opposite structural handedness reflect such plane waves little. This effect tends to distort the shapes of transmitted pulses with respect to the incident pulses, and such shaping can cause sharp changes in some measures of average speed with respect to carrier wavelength. A local maximum in the variation of one measure of the pulse duration with respect to wavelength is noted and attributed to the circular Bragg phenomenon. Several of these effects are explained via frequency-domain arguments. The presented results serve as a foundation for future theoretical and experimental studies of optical pulse propagation through causal, nonlinear, nonhomogeneous, and anisotropic materials.Comment: To appear in Journal of Modern Optic

    A model for orientation effects in electron‐transfer reactions

    Get PDF
    A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells

    Dissipative systems: uncontrollability, observability and RLC realizability

    Full text link
    The theory of dissipativity has been primarily developed for controllable systems/behaviors. For various reasons, in the context of uncontrollable systems/behaviors, a more appropriate definition of dissipativity is in terms of the dissipation inequality, namely the {\em existence} of a storage function. A storage function is a function such that along every system trajectory, the rate of increase of the storage function is at most the power supplied. While the power supplied is always expressed in terms of only the external variables, whether or not the storage function should be allowed to depend on unobservable/hidden variables also has various consequences on the notion of dissipativity: this paper thoroughly investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. We first assume that the storage function can be expressed in terms of the external variables and their derivatives only and prove our first main result that, assuming the uncontrollable poles are unmixed, i.e. no pair of uncontrollable poles add to zero, and assuming a strictness of dissipativity at the infinity frequency, the dissipativities of a system and its controllable part are equivalent. We also show that the storage function in this case is a static state function. We then investigate the utility of unobservable/hidden variables in the definition of storage function: we prove that lossless autonomous behaviors require storage function to be unobservable from external variables. We next propose another intuitive definition: a behavior is called dissipative if it can be embedded in a controllable dissipative {\em super-behavior}. We show that this definition imposes a constraint on the number of inputs and thus explains unintuitive examples from the literature in the context of lossless/orthogonal behaviors.Comment: 26 pages, one figure. Partial results appeared in an IFAC conference (World Congress, Milan, Italy, 2011

    Species diversity of the deep-water gulper sharks (Squaliformes: Centrophoridae: Centrophorus) in North Atlantic waters - current status and taxonomic issues

    Get PDF
    The gulper sharks (genus Centrophorus) are a group of deep-water benthopelagic sharks with a worldwide distribution. The alpha taxonomy of the group has historically been problematic and the number of species included in the genus has varied considerably over the years and is still under debate. Gulper sharks are routinely caught in mid- and deep-water fisheries worldwide and some have shown a considerable decline in abundance in the last few decades. Clear and consistent species discrimination of Centrophorus is essential for an efficient and sustainable management of these fisheries resources. Our study used molecular cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene sequences and morphometric data to re-evaluate the diversity of Centrophorus in North Atlantic waters, including the Gulf of Mexico, the Caribbean, and the Mediterranean Seas. Molecular data separated North Atlantic Centrophorus into five well-supported groups whereas morphometric data separated these same five groups and suggested three additional groups for which no molecular data were available. Four of the five groups identified in the North Atlantic also occur in the Indian and/or Pacific Oceans, thus extending the reported range of some species considerably. A species identification key for North Atlantic Centrophorus is provided based on our findings. (c) 2014 The Linnean Society of Londo

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    Next-to-leading order QCD predictions for W+W+jj production at the LHC

    Full text link
    Because the LHC is a proton-proton collider, sizable production of two positively charged W-bosons in association with two jets is possible. This process leads to a distinct signature of same sign high-pt leptons, missing energy and jets. We compute the NLO QCD corrections to the QCD-mediated part of pp -> W+W+jj. These corrections reduce the dependence of the production cross-section on the renormalization and factorization scale to about +- 10 percent. We find that a large number of W+W+jj events contain a relatively hard third jet. The presence of this jet should help to either pick up the W+W+jj signal or to reject it as an unwanted background.Comment: 15 pages, 5 (lovely) figures, v3 accepted for publication in JHEP, corrects tables in appendi

    Tensorial Reconstruction at the Integrand Level

    Get PDF
    We present a new approach to the reduction of one-loop amplitudes obtained by reconstructing the tensorial expression of the scattering amplitudes. The reconstruction is performed at the integrand level by means of a sampling in the integration momentum. There are several interesting applications of this novel method within existing techniques for the reduction of one-loop multi-leg amplitudes: to deal with numerically unstable points, such as in the vicinity of a vanishing Gram determinant; to allow for a sampling of the numerator function based on real values of the integration momentum; to optimize the numerical reduction in the case of long expressions for the numerator functions.Comment: 20 pages, 2 figure
    • 

    corecore