36,742 research outputs found
Distinguishing the âTruly Nationalâ From the âTruly Localâ: Customary Allocation, Commercial Activity, and Collective Action
This Essay makes two claims about different methods of defining the expanse and limits of the Commerce Clause. My first claim is that approaches that privilege traditional subjects of state regulation are unworkable and undesirable. These approaches are unworkable in light of the frequency with which the federal government and the states regulate the same subject matter in our world of largely overlapping federal and state legislative jurisdiction. The approaches are undesirable because the question of customary allocation is unrelated to the principal reason why Congress possesses the power to regulate interstate commerce: solving collective action problems involving multiple states. These problems are evident in the way that some federal judges invoked regulatory custom in litigation over the constitutionality of the minimum coverage provision in the Patient Protection and Affordable Care Act. The areas of health insurance and health care are not of exclusive state concern, and it is impossible to loseâor to winâa competition requiring skillful lawyers or judges to describe them as more state than federal, or more federal than state. Nor is it most important what the answer is.
More promising are the approaches that view congressional authority as turning on either commercial activity or collective action problems facing the states. My second claim is that these two approaches have advantages and disadvantages, and that the choice between them exemplifies the more general tension between applying rules and applying their background justifications. I have previously defended a collective action approach to Article I, Section 8. My primary purpose in this Essay is to clarify the jurisprudential stakes in adopting one method or the other and to identify the problems that advocates of each approach must address
A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems
In this paper we present a dynamical Monte Carlo algorithm which is
applicable to systems satisfying a clustering condition: during the dynamical
evolution the system is mostly trapped in deep local minima (as happens in
glasses, pinning problems etc.). We compare the algorithm to the usual Monte
Carlo algorithm, using as an example the Bernasconi model. In this model, a
straightforward implementation of the algorithm gives an improvement of several
orders of magnitude in computational speed with respect to a recent, already
very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin
Potentiality in Biology
We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology
Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films
The durations and average speeds of ultrashort optical pulses transmitted
through chiral sculptured thin films (STFs) were calculated using a
finite-difference time-domain algorithm. Chiral STFs are a class of
nanoengineered materials whose microstructure comprises parallel helicoidal
nanowires grown normal to a substrate. The nanowires are 10-300 nm in
diameter and m in length. Durations of transmitted pulses tend to
increase with decreasing (free-space) wavelength of the carrier plane wave,
while average speeds tend to increase with increasing wavelength. An increase
in nonlinearity, as manifested by an intensity-dependent refractive index in
the frequency domain, tends to increase durations of transmitted pulses and
decrease average speeds. The circular Bragg phenomenon exhibited by a chiral
STFs manifests itself in the frequency domain as high reflectivity for normally
incident carrier plane waves whose circular polarization state is matched to
the structural handedness of the film and whose wavelength falls in a range
known as the Bragg regime; films of the opposite structural handedness reflect
such plane waves little. This effect tends to distort the shapes of transmitted
pulses with respect to the incident pulses, and such shaping can cause sharp
changes in some measures of average speed with respect to carrier wavelength. A
local maximum in the variation of one measure of the pulse duration with
respect to wavelength is noted and attributed to the circular Bragg phenomenon.
Several of these effects are explained via frequency-domain arguments. The
presented results serve as a foundation for future theoretical and experimental
studies of optical pulse propagation through causal, nonlinear, nonhomogeneous,
and anisotropic materials.Comment: To appear in Journal of Modern Optic
A model for orientation effects in electronâtransfer reactions
A method for solving the singleâparticle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells
Dissipative systems: uncontrollability, observability and RLC realizability
The theory of dissipativity has been primarily developed for controllable
systems/behaviors. For various reasons, in the context of uncontrollable
systems/behaviors, a more appropriate definition of dissipativity is in terms
of the dissipation inequality, namely the {\em existence} of a storage
function. A storage function is a function such that along every system
trajectory, the rate of increase of the storage function is at most the power
supplied. While the power supplied is always expressed in terms of only the
external variables, whether or not the storage function should be allowed to
depend on unobservable/hidden variables also has various consequences on the
notion of dissipativity: this paper thoroughly investigates the key aspects of
both cases, and also proposes another intuitive definition of dissipativity.
We first assume that the storage function can be expressed in terms of the
external variables and their derivatives only and prove our first main result
that, assuming the uncontrollable poles are unmixed, i.e. no pair of
uncontrollable poles add to zero, and assuming a strictness of dissipativity at
the infinity frequency, the dissipativities of a system and its controllable
part are equivalent. We also show that the storage function in this case is a
static state function.
We then investigate the utility of unobservable/hidden variables in the
definition of storage function: we prove that lossless autonomous behaviors
require storage function to be unobservable from external variables. We next
propose another intuitive definition: a behavior is called dissipative if it
can be embedded in a controllable dissipative {\em super-behavior}. We show
that this definition imposes a constraint on the number of inputs and thus
explains unintuitive examples from the literature in the context of
lossless/orthogonal behaviors.Comment: 26 pages, one figure. Partial results appeared in an IFAC conference
(World Congress, Milan, Italy, 2011
Species diversity of the deep-water gulper sharks (Squaliformes: Centrophoridae: Centrophorus) in North Atlantic waters - current status and taxonomic issues
The gulper sharks (genus Centrophorus) are a group of deep-water benthopelagic sharks with a worldwide distribution. The alpha taxonomy of the group has historically been problematic and the number of species included in the genus has varied considerably over the years and is still under debate. Gulper sharks are routinely caught in mid- and deep-water fisheries worldwide and some have shown a considerable decline in abundance in the last few decades. Clear and consistent species discrimination of Centrophorus is essential for an efficient and sustainable management of these fisheries resources. Our study used molecular cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene sequences and morphometric data to re-evaluate the diversity of Centrophorus in North Atlantic waters, including the Gulf of Mexico, the Caribbean, and the Mediterranean Seas. Molecular data separated North Atlantic Centrophorus into five well-supported groups whereas morphometric data separated these same five groups and suggested three additional groups for which no molecular data were available. Four of the five groups identified in the North Atlantic also occur in the Indian and/or Pacific Oceans, thus extending the reported range of some species considerably. A species identification key for North Atlantic Centrophorus is provided based on our findings. (c) 2014 The Linnean Society of Londo
Towards Physical Hybrid Systems
Some hybrid systems models are unsafe for mathematically correct but
physically unrealistic reasons. For example, mathematical models can classify a
system as being unsafe on a set that is too small to have physical importance.
In particular, differences in measure zero sets in models of cyber-physical
systems (CPS) have significant mathematical impact on the mathematical safety
of these models even though differences on measure zero sets have no tangible
physical effect in a real system. We develop the concept of "physical hybrid
systems" (PHS) to help reunite mathematical models with physical reality. We
modify a hybrid systems logic (differential temporal dynamic logic) by adding a
first-class operator to elide distinctions on measure zero sets of time within
CPS models. This approach facilitates modeling since it admits the verification
of a wider class of models, including some physically realistic models that
would otherwise be classified as mathematically unsafe. We also develop a proof
calculus to help with the verification of PHS.Comment: CADE 201
Next-to-leading order QCD predictions for W+W+jj production at the LHC
Because the LHC is a proton-proton collider, sizable production of two
positively charged W-bosons in association with two jets is possible. This
process leads to a distinct signature of same sign high-pt leptons, missing
energy and jets. We compute the NLO QCD corrections to the QCD-mediated part of
pp -> W+W+jj. These corrections reduce the dependence of the production
cross-section on the renormalization and factorization scale to about +- 10
percent. We find that a large number of W+W+jj events contain a relatively hard
third jet. The presence of this jet should help to either pick up the W+W+jj
signal or to reject it as an unwanted background.Comment: 15 pages, 5 (lovely) figures, v3 accepted for publication in JHEP,
corrects tables in appendi
Tensorial Reconstruction at the Integrand Level
We present a new approach to the reduction of one-loop amplitudes obtained by
reconstructing the tensorial expression of the scattering amplitudes. The
reconstruction is performed at the integrand level by means of a sampling in
the integration momentum. There are several interesting applications of this
novel method within existing techniques for the reduction of one-loop multi-leg
amplitudes: to deal with numerically unstable points, such as in the vicinity
of a vanishing Gram determinant; to allow for a sampling of the numerator
function based on real values of the integration momentum; to optimize the
numerical reduction in the case of long expressions for the numerator
functions.Comment: 20 pages, 2 figure
- âŠ