432 research outputs found

    The BioGRID Interaction Database: 2011 update

    Get PDF
    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions

    Revisiting strategies for breeding anthracnose resistance in lentil: the case with wild species

    Get PDF
    Non-Peer ReviewedBreeders at the Crop Development Centre (CDC) have up to now only used germplasm resources available in the cultivated lentil to develop new varieties with resistance to diseases. Based on recent studies, the available cultivated germplasm does not offer sufficient genetic variation for resistance to anthracnose and ascochyta diseases. Lentil crop is attacked by two major diseases (anthracnose and ascochyta) that can cause 100% loss in the worst scenarios. Since anthracnose is only a major lentil disease in North America, no work has been done to improve resistance to this disease elsewhere. Wild species of many crops are known to carry many disease resistance genes lacking in the cultivated crop. We began the search for anthracnose resistance in the six wild species of lentil (world collection), of which two can be easily crossed with the cultivated type. Two strains of anthracnose (race 1 and race 2) with varying degrees of virulence were reported. The 2002 field data suggested that some of the Lens ervoides and Lens lamottei accessions exhibited no lesions at all when exposed to the combination of the two anthracnose strains. The cultivated types that show resistance to the less virulent strain were severely affected by anthracnose. In the greenhouse study the wild species were inoculated with the two strains separately and results indicate that no accession is immune to the more virulent type. However, some of the L. ervoides and L. lamottei accessions had good resistance compared to their cultivated counterparts. As a long term strategy, the lentil breeding program at CDC, University of Saskatchewan has a goal of fully utilizing the available resistance sources. However, these two species cannot be easily crossed with the cultivated types using the conventional/manual crossing techniques. A tissue culture procedure involving embryo rescue is used to facilitate crossing. We have been able to successfully rescue some embryos from crosses with Lens ervoides. The hybrid plants produce some fertile seeds which will be evaluated for resistance to both anthracnose and ascochyta. The selected resistant lines will then be backcrossed to the adopted backgrounds in order to deploy resistance genes

    Deciphering Network Community Structure by Surprise

    Get PDF
    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks.Comment: 7 pages, 5 figure

    Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients

    Get PDF
    The development of paediatric medicines can be challenging since this is a diverse patient population with specific needs. For example, the toxicity of excipients may differ in children compared to adults and children have different taste preferences. Acceptable palatability of oral paediatric medicinal products is of great importance to facilitate patient adherence. This has been recognised by regulatory authorities and so is becoming a key aspect of paediatric pharmaceutical development studies. Many active pharmaceutical ingredients (APIs) have aversive taste characteristics and so it is necessary to utilise taste masking techniques to improve the palatability of paediatric oral formulations. The aim of this review is to provide an overview of different approaches to taste masking APIs in paediatric oral dosage forms, with a focus on the tolerability of excipients used. In addition, where possible, the provision of examples of some marketed products is made

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe

    Exploratory analysis of protein translation regulatory networks using hierarchical random graphs

    Get PDF
    Abstract Background Protein translation is a vital cellular process for any living organism. The availability of interaction databases provides an opportunity for researchers to exploit the immense amount of data in silico such as studying biological networks. There has been an extensive effort using computational methods in deciphering the transcriptional regulatory networks. However, research on translation regulatory networks has caught little attention in the bioinformatics and computational biology community. Results In this paper, we present an exploratory analysis of yeast protein translation regulatory networks using hierarchical random graphs. We derive a protein translation regulatory network from a protein-protein interaction dataset. Using a hierarchical random graph model, we show that the network exhibits well organized hierarchical structure. In addition, we apply this technique to predict missing links in the network. Conclusions The hierarchical random graph mode can be a potentially useful technique for inferring hierarchical structure from network data and predicting missing links in partly known networks. The results from the reconstructed protein translation regulatory networks have potential implications for better understanding mechanisms of translational control from a system’s perspective

    Network-Free Inference of Knockout Effects in Yeast

    Get PDF
    Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network
    corecore