627 research outputs found
Low-energy sector of the S=1/2 Kagome antiferromagnet
Starting from a modified version of the the S=1/2 Kagome antiferromagnet to
emphasize the role of elementary triangles, an effective Hamiltonian involving
spin and chirality variables is derived. A mean-field decoupling that retains
the quantum nature of these variables is shown to yield a Hamiltonian that can
be solved exactly, leading to the following predictions: i) The number of low
lying singlet states increase with the number of sites N like 1.15 to the power
N; ii) A singlet-triplet gap remains in the thermodynamic limit; iii) Spinons
form boundstates with a small binding energy. By comparing these properties
with those of the regular Kagome lattice as revealed by numerical experiments,
we argue that this description captures the essential low energy physics of
that model.Comment: 4 pages including 3 figure
Dynamics of Metallic Particle Contamination in Gas Insulated Substation (GIS)
This paper analyses the movement of free conducting particles inside a single phase Gas Insulated Bus duct(GIB).A two dimensional mathematical model was proposed for determining the movement pattern of metallic particle in GIB by considering all the forces acting on the particle like gravitational, drag and the electric field forces. These particles may be free to move in the electric field or may be fixed on the conductors, thus enhancing local surface fields. Electric fields at the instantaneous contaminated particle locations were computed using Charge Simulation Method (CSM).To determine the particle trajectory in a single phase Gas Insulated Bus duct (GIB), an enclosure diameter 152 mm and conductor diameter 55 mm is considered. The simulation of the particle movement was carried under different AC voltage levels like 100KV, 132KV, 145KV and 175KV class enclosure of GIB for aluminum, copper and silver particles. The results of the simulation have been presented and analyzed in this paper
Sudden switch of generalized Lieb-Robinson velocity in a transverse field Ising spin chain
The Lieb-Robinson theorem states that the speed at which the correlations
between two distant nodes in a spin network can be built through local
interactions has an upper bound, which is called the Lieb-Robinson velocity.
Our central aim is to demonstrate how to observe the Lieb-Robinson velocity in
an Ising spin chain with a strong transverse field. We adopt and compare four
correlation measures for characterizing different types of correlations, which
include correlation function, mutual information, quantum discord, and
entanglement of formation. We prove that one of correlation functions shows a
special behavior depending on the parity of the spin number. All the
information-theoretical correlation measures demonstrate the existence of the
Lieb-Robinson velocity. In particular, we find that there is a sudden switch of
the Lieb-Robinson speed with the increasing of the number of spin
The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents
Aims. The current study explored the nature of problematic (addictive) video gaming and the association with game type, psychosocial health, and substance use. Methods. Data were collected using a paper and pencil survey in the classroom setting. Three samples were aggregated to achieve a total sample of 8478 unique adolescents. Scales included measures of game use, game type, the Video game Addiction Test (VAT), depressive mood, negative self-esteem, loneliness, social anxiety, education performance, and use of cannabis, alcohol and nicotine (smoking). Results. Findings confirmed problematic gaming is most common amongst adolescent gamers who play multiplayer online games. Boys (60%) were more likely to play online games than girls (14%) and problematic gamers were more likely to be boys (5%) than girls (1%). High problematic gamers showed higher scores on depressive mood, loneliness, social anxiety, negative self-esteem, and self-reported lower school performance. Nicotine, alcohol, and cannabis using boys were almost twice more likely to report high PVG than non-users. Conclusions. It appears that online gaming in general is not necessarily associated with problems. However, problematic gamers do seem to play online games more often, and a small subgroup of gamers – specifically boys – showed lower psychosocial functioning and lower grades. Moreover, associations with alcohol, nicotine, and cannabis use are found. It would appear that problematic gaming is an undesirable problem for a small subgroup of gamers. The findings encourage further exploration of the role of psychoactive substance use in problematic gaming
On the universality of the fluctuation-dissipation ratio in non-equilibrium critical dynamics
The two-time nonequilibrium correlation and response functions in 1D kinetic
classical spin systems with non-conserved dynamics and quenched to their
zero-temperature critical point are studied. The exact solution of the kinetic
Ising model with Glauber dynamics for a wide class of initial states allows for
an explicit test of the universality of the non-equilibrium limit
fluctuation-dissipation ratio X_{\infty}. It is shown that the value of
X_{\infty} depends on whether the initial state has finitely many domain walls
or not and thus two distinct dynamic universality classes can be identified in
this model. Generic 1D kinetic spin systems with non-conserved dynamics fall
into the same universality classes as the kinetic Glauber-Ising model provided
the dynamics is invariant under the C-symmetry of simultaneous spin and
magnetic-field reversal. While C-symmetry is satisfied for magnetic systems, it
need not be for lattice gases which may therefore display hitherto unexplored
types of non-universal kinetics
Excess energy of an ultracold Fermi gas in a trapped geometry
We have analytically explored finite size and interparticle interaction
corrections to the average energy of a harmonically trapped Fermi gas below and
above the Fermi temperature, and have obtained a better fitting for the excess
energy reported by DeMarco and Jin [Science , 1703 (1999)]. We
have presented a perturbative calculation within a mean field approximation.Comment: 8 pages, 4 figures; Accepted in European Physical Journal
Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the
India-based Neutrino Observatory (INO) is designed to study the atmospheric
neutrinos and antineutrinos separately over a wide range of energies and path
lengths. The primary focus of this experiment is to explore the Earth matter
effects by observing the energy and zenith angle dependence of the atmospheric
neutrinos in the multi-GeV range. This study will be crucial to address some of
the outstanding issues in neutrino oscillation physics, including the
fundamental issue of neutrino mass hierarchy. In this document, we present the
physics potential of the detector as obtained from realistic detector
simulations. We describe the simulation framework, the neutrino interactions in
the detector, and the expected response of the detector to particles traversing
it. The ICAL detector can determine the energy and direction of the muons to a
high precision, and in addition, its sensitivity to multi-GeV hadrons increases
its physics reach substantially. Its charge identification capability, and
hence its ability to distinguish neutrinos from antineutrinos, makes it an
efficient detector for determining the neutrino mass hierarchy. In this report,
we outline the analyses carried out for the determination of neutrino mass
hierarchy and precision measurements of atmospheric neutrino mixing parameters
at ICAL, and give the expected physics reach of the detector with 10 years of
runtime. We also explore the potential of ICAL for probing new physics
scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration,
Contents identical with the version published in Pramana - J. Physic
A Portuguese East Indiaman from the 1502-1503 Fleet of Vasco da Gama off Al Hallaniyah Island, Oman: An interim report
Two Portuguese naus from Vasco da Gama's second voyage to India, left behind to disrupt maritime trade between India and the Red Sea, were wrecked in May 1503 off the north-eastern coast of Al Hallaniyah Island, Oman. The ships, Esmeralda and São Pedro, had been commanded by da Gama's maternal uncles, Vicente and Brás Sodré, respectively. A detailed study and scientific analysis of an artefact assemblage recovered during archaeological excavations conducted in Al Hallaniyah in 2013 and 2014 confirms the location of an early 16th-century Portuguese wreck-site, initially discovered in 1998. Esmeralda is proposed as the probable source of the remaining, un-salved wreckage
Strong-coupling expansion and effective hamiltonians
When looking for analytical approaches to treat frustrated quantum magnets,
it is often very useful to start from a limit where the ground state is highly
degenerate. This chapter discusses several ways of deriving {effective
Hamiltonians} around such limits, starting from standard {degenerate
perturbation theory} and proceeding to modern approaches more appropriate for
the derivation of high-order effective Hamiltonians, such as the perturbative
continuous unitary transformations or contractor renormalization. In the course
of this exposition, a number of examples taken from the recent literature are
discussed, including frustrated ladders and other dimer-based Heisenberg models
in a field, as well as the mapping between frustrated Ising models in a
transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C.
Lacroix, P. Mendels, F. Mil
- …
