56 research outputs found

    Advances in the biofabrication of 3D skin in vitro : healthy and pathological models

    Get PDF
    The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation

    The role of membrane lipids in the induction of macrophage apoptosis by microparticles

    Get PDF
    Microparticles are membrane-derived vesicles that are released from cells during activation or cell death. These particles can serve as mediators of intercellular cross-talk and induce a variety of cellular responses. Previous studies have shown that macrophages undergo apoptosis after phagocytosing microparticles. Here, we have addressed the hypothesis that microparticles trigger this process via lipid pathways. In these experiments, microparticles induced apoptosis in primary macrophage cells or cell lines (RAW 264.7 or U937) with up to a 5-fold increase. Preincubation of macrophages with phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)BP) reduced the microparticle-induced apoptosis in a dose-dependent manner. PtdIns(3,5)BP is a specific inhibitor of the acid sphingomyelinase and thus can block the generation of pro-apoptotic ceramides. Similarly, the pre-incubation of macrophages with PtdIns(3,5)BP prevented microparticle-induced upregulation of caspase 8, which is a major target molecule of ceramide action in the apoptosis pathway. PtdIns(3,5)BP, however, had no effect on the spontaneous rate of apoptosis. To evaluate further signaling pathways induced by microparticles, the extracellular signal regulated kinase (ERK-) 1 was investigated. This kinase plays a role in activating phospholipases A2 which cleaves membrane phospholipids into arachidonic acid; microparticles have been suggested to be a preferred substrate for phospholipases A2. As shown in our experiments, microparticles strongly increased the amount of phosphorylated ERK1/2 in RAW 264.7 macrophages in a time-dependent manner, peaking 15 min after co-incubation. Addition of PD98059, a specific inhibitor of ERK1, prevented the increase in apoptosis of RAW 264.7 macrophages. Together, these data suggest that microparticles perturb lipid homeostasis of macrophages and thereby induce apoptosis. These results emphasize the importance of biolipids in the cellular cross-talk of immune cells. Based on the fact that in clinical situations with excessive cell death such as malignancies, autoimmune diseases and following chemotherapies high levels of circulating microparticles might modulate phagocytosing cells, a suppression of the immune response might occur due to loss of macrophage

    Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity

    Get PDF
    INTRODUCTION: Cell stimulation leads to the shedding of phosphatidylserine (PS)-rich microparticles (MPs). Because autoimmune diseases (AIDs) are characterized by cell activation, we investigated level of circulating MPs as a possible biomarker in primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: We measured plasma levels of total, platelet and leukocyte MPs by prothrombinase capture assay and flow cytometry in 43 patients with pSS, 20 with SLE and 24 with RA and in 44 healthy controls (HCs). Secretory phospholipase A2 (sPLA2) activity was assessed by fluorometry. Soluble CD40 ligand (sCD40L) and soluble P-selectin (sCD62P), reflecting platelet activation, were measured by ELISA. RESULTS: Patients with pSS showed increased plasma level of total MPs (mean +/- SEM 8.49 +/- 1.14 nM PS equivalent (Eq), P < 0.0001), as did patients with RA (7.23 +/- 1.05 n PS Eq, P = 0.004) and SLE (7.3 +/- 1.25 nM PS Eq, P = 0.0004), as compared with HCs (4.13 +/- 0.2 nM PS Eq). Patients with AIDs all showed increased level of platelet MPs (P < 0.0001), but only those with pSS showed increased level of leukocyte MPs (P < 0.0001). Results by capture assay and flow cytometry were correlated. In patients with high disease activity according to extra-glandular complications (pSS), DAS28 (RA) or SLEDAI (SLE) compared with low-activity patients, the MP level was only slightly increased in comparison with those having a low disease activity. Platelet MP level was inversely correlated with anti-DNA antibody level in SLE (r = -0.65; P = 0.003) and serum beta2 microglobulin level in pSS (r = -0.37; P < 0.03). The levels of total and platelet MPs were inversely correlated with sPLA2 activity (r = -0.37, P = 0.0007; r = -0.36, P = 0.002, respectively). sCD40L and sCD62P concentrations were significantly higher in pSS than in HC (P </= 0.006). CONCLUSIONS: Plasma MP level is elevated in pSS, as well as in SLE and RA, and could be used as a biomarker reflecting systemic cell activation. Level of leukocyte-derived MPs is increased in pSS only. The MP level is low in case of more severe AID, probably because of high secretory phospholipase A2 (sPLA2) activity, which leads to consumption of MPs. Increase of platelet-derived MPs, sCD40L and sCD62P, highlights platelet activation in pSS

    Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis

    Get PDF
    OBJECTIVE: In the present study we evaluated the decrease of cartilage destruction by a novel orally active and specific MMP-13 inhibitor in three different animal models of rheumatoid arthritis (RA). MATERIALS AND METHODS: The SCID mouse co-implantation model of RA, collagen-induced arthritis (CIA) model in mice and the antigen induced arthritis model (AIA) in rabbits were used. RESULTS: In the SCID mouse co-implantation model this inhibitor resulted in reduced cartilage destruction by 75%. In the CIA model of RA, the MMP-13 inhibitor resulted in a significant and dose dependent decrease in clinical symptoms as well as of cartilage erosion by 38% (30 mg/kg), 28% (10 mg/kg) and 21% (3 mg/kg). No significant effects were observed in the AIA model. No toxic effects were observed in all three animal models. CONCLUSION: Although several MMPs in concert with other proteinases play a role in the process of cartilage destruction, there is a need for highly selective MMP inhibitors to reduce severe side effects that occur with non-specific inhibitors. Significant inhibition of MMP-13 reduced cartilage erosions in two out of three tested animal models of RA. These results strongly support the development of this class of drugs to reduce or halt joint destruction in patients with RA

    Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models

    Get PDF
    The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation

    Platelet-derived serotonin links vascular disease and tissue fibrosis

    Get PDF
    Blocking 5-HT2B receptor provides a therapeutic target for fibrotic diseases caused by activated platelet release of serotonin during vascular damage

    Acrylonitrile and pullulan based nanofiber mats as easily accessible scaffolds for 3D skin cell models containing primary cells

    Get PDF
    (1) Background: Three-dimensional (3D) collagen I-based skin models are commonly used in drug development and substance testing but have major drawbacks such as batch-to-batch variations and ethical concerns. Recently, synthetic nanofibrous scaffolds created by electrospinning have received increasing interest as potential alternatives due to their morphological similarities to native collagen fibrils in size and orientation. The overall objective of this proof-of-concept study was to demonstrate the suitability of two synthetic polymers in creating electrospun scaffolds for 3D skin cell models. (2) Methods: Electrospun nanofiber mats were produced with (i) poly(acrylonitrile-co-methyl acrylate) (P(AN-MA)) and (ii) a blend of pullulan (Pul), poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) (Pul/PVA/PAA) and characterized by scanning electron microscopy (SEM) and diffuse reflectance infrared Fourier transform (DRIFT) spectra. Primary skin fibroblasts and keratinocytes were seeded onto the nanofiber mats and analyzed for phenotypic characteristics (phalloidin staining), viability (Presto Blue HS assay), proliferation (Ki-67 staining), distribution (H/E staining), responsiveness to biological stimuli (qPCR), and formation of skin-like structures (H/E staining). (3) Results: P(AN-MA) mats were more loosely packed than the Pul/PVA/PAA mats, concomitant with larger fiber diameter (340 nm ± 120 nm vs. 250 nm ± 120 nm, p < 0.0001). After sterilization and exposure to cell culture media for 28 days, P(AN-MA) mats showed significant adsorption of fetal calf serum (FCS) from the media into the fibers (DRIFT spectra) and increased fiber diameter (590 nm ± 290 nm, p < 0.0001). Skin fibroblasts were viable over time on both nanofiber mats, but suitable cell infiltration only occurred in the P(AN-MA) nanofiber mats. On P(AN-MA) mats, fibroblasts showed their characteristic spindle-like shape, produced a dermis-like structure, and responded well to TGFβ stimulation, with a significant increase in the mRNA expression of PAI1, COL1A1, and αSMA (all p < 0.05). Primary keratinocytes seeded on top of the dermis equivalent proliferated and formed a stratified epidermis-like structure. (4) Conclusion: P(AN-MA) and Pul/PVA/PAA are both biocompatible materials suitable for nanofiber mat production. P(AN-MA) mats hold greater potential as future 3D skin models due to enhanced cell compatibility (i.e., adsorption of FCS proteins), cell infiltration (i.e., increased pore size due to swelling behavior), and cell phenotype preservation. Thus, our proof-of-concept study shows an easy and robust process of producing electrospun scaffolds for 3D skin cell models made of P(AN-MA) nanofibers without the need for bioactive molecule attachments

    PU.1 controls fibroblast polarization and tissue fibrosis

    Get PDF
    Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs
    corecore