27 research outputs found

    Walking and postural balance in adults with severe short stature due to isolated GH deficiency

    Get PDF
    Objectives: Walking and postural balance are extremely important to obtain food and to work. Both are critical for quality of life and ability to survive. While walking reflects musculoskeletal and cardiopulmonary systems, postural balance depends on body size, muscle tone, visual, vestibular and nervous systems. Since GH and IGF-I act on all these systems, we decided to study those parameters in a cohort of individuals with severe short stature due to untreated isolated GH deficiency (IGHD) caused by a mutation in the GHRH receptor gene. These IGHD subjects, despite reduction in muscle mass, are very active and have normal longevity. Methods: In a cross-sectional study, we assessed walking (by a 6-min walk test), postural balance (by force platform) and fall risk (by the 'Timed Up and Go' test) in 31 IGHD and 40 matched health controls. Results: The percentage of the walked distance measured in relation to the predicted one was similar in groups, but higher in IGHD, when corrected by the leg length. Absolute postural balance data showed similar velocity of unipodal support in the two groups, and better values, with open and closed eyes and unipodal support, in IGHD, but these differences became non-significant when corrected for height and lower-limb length. The time in 'Timed Up and Go' test was higher in IGHD cohort, but still below the cut-off value for fall risk. Conclusion: IGHD subjects exhibit satisfactory walking and postural balance, without increase in fall risk

    Risk factors for healthcare-associated infection in pediatric intensive care units: a systematic review

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition

    No full text
    In this work, methylcellulose (MC) was produced from bacterial cellulose (BC), using dimethyl sulfate in a 3 h (MC3h) or 5 h (MC5h) reaction under heterogeneous conditions, with reagent substitution at each hour. MC3h showed a degree of substitution (DS) of 2.26 ± 0.13 and MC5h showed a DS of 2.33 ± 0.05. The two samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), 13C nuclear magnetic ressonance (NMR) and 1H NMR techniques. The FTIR spectra of the BC and MC samples present significant differences in the regions from 3750 to 2750 cm−1 and from 1500 to 750 cm−1, which evidence the methylation of the samples. Solid state NMR spectroscopy of the MC samples was used to identify the 13C NMR signals of substitution at sites C-2, C-3 or C-6 in the glucopyranose units. The modification of bacterial cellulose produced a material with a high DS, determined by three different techniques (chemically and using the liquid 1H and solid 13C NMR spectra). These samples also demonstrate high crystallinity and thermal stability. With the MC samples synthesized in this work, transparent and resistant films were prepared and also a highly porous sponge like material

    Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive

    No full text
    Methylcellulose was produced from the fibers of Mangifera indica L. Ubá mango seeds. MCD and MCI methylcellulose samples were made by heterogeneous methylation, using dimethyl sulfate and iodomethane as alkylating agents, respectively. The materials produced were characterized for their thermal properties (DSC and TGA), crystallinity (XRD) and Degree of Substitution (DS) in the chemical route. The cellulose derivatives were employed as mortar additive in order to improve mortar workability and adhesion to the substrate. These properties were evaluated by means of the consistency index (CI) and bond tensile strength (TS) tests. The methylcellulose (MCD and MCI) samples had CI increased by 27.75 and 71.54% and TS increased by 23.33 and 29.78%, respectively, in comparison to the reference sample. Therefore, the polymers can be used to produce adhesive mortars

    Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil

    No full text
    Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain
    corecore