278 research outputs found

    Interacting crumpled manifolds

    Full text link
    In this article we study the effect of a delta-interaction on a polymerized membrane of arbitrary internal dimension D. Depending on the dimensionality of membrane and embedding space, different physical scenarios are observed. We emphasize on the difference of polymers from membranes. For the latter, non-trivial contributions appear at the 2-loop level. We also exploit a ``massive scheme'' inspired by calculations in fixed dimensions for scalar field theories. Despite the fact that these calculations are only amenable numerically, we found that in the limit of D to 2 each diagram can be evaluated analytically. This property extends in fact to any order in perturbation theory, allowing for a summation of all orders. This is a novel and quite surprising result. Finally, an attempt to go beyond D=2 is presented. Applications to the case of self-avoiding membranes are mentioned

    Probing Color Response - Wakes in a Color Plasma

    Full text link
    The wake induced in a hot QCD medium by a high momentum parton (jet precursor) is calculated in the framework of linear response theory. Two different scenarios are discussed: a weakly coupled quark gluon plasma (pQGP) as described by hard-thermal loop (HTL) perturbation theory and a strongly cupled QGP (sQGP) with the properties of a quantum liquid. In the latter case the wake could exhibit a pronounced Mach cone structure. This physical mechanism could be important for the understanding of preliminary data from the PHENIX and STAR experiments at RHIC on the angular distribution of low-pt secondaries stemming from the away-side jet which indicate maxima at Δϕ=π±1.1\Delta\phi=\pi \pm 1.1.Comment: Prepared for: Workshop on Correlations and Fluctuations in Relativistic Nuclear Collisions, MIT, Cambridge, Massachusetts, USA, 21-23 April 200

    Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving

    Get PDF
    Deep neural networks (DNNs) have proven their capabilities in the past years and play a significant role in environment perception for the challenging application of automated driving. They are employed for tasks such as detection, semantic segmentation, and sensor fusion. Despite tremendous research efforts, several issues still need to be addressed that limit the applicability of DNNs in automated driving. The bad generalization of DNNs to unseen domains is a major problem on the way to a safe, large-scale application, because manual annotation of new domains is costly, particularly for semantic segmentation. For this reason, methods are required to adapt DNNs to new domains without labeling effort. This task is termed unsupervised domain adaptation (UDA). While several different domain shifts challenge DNNs, the shift between synthetic and real data is of particular importance for automated driving, as it allows the use of simulation environments for DNN training. We present an overview of the current state of the art in this research field. We categorize and explain the different approaches for UDA. The number of considered publications is larger than any other survey on this topic. We also go far beyond the description of the UDA state-of-the-art, as we present a quantitative comparison of approaches and point out the latest trends in this field. We conduct a critical analysis of the state-of-the-art and highlight promising future research directions. With this survey, we aim to facilitate UDA research further and encourage scientists to exploit novel research directions

    Calciphylaxis in chronic, non-dialysis-dependent renal disease

    Get PDF
    BACKGROUND: Calciphylaxis cutis is characterized by media calcification of arteries and, most prominently, of cutaneous and subcutaneous arterioles occurring in renal insufficiency patients. CASE REPORT: A 53-year-old woman with chronic cardiac and renal failure complained of painful crural, non-varicosis ulcers. She was hospitalized in an immobilized condition due to both the crural ulcerations and the existing heart-failure state (NYHA III-IV) having pleural and pericardial effusions, atrial fibrillation and weight loss of 30 kg over the past year. Despite normalization of calcium-phosphorus balance and improvement of renal function, the clinical course of crural ulcerations deteriorated during the following 3 months. After failure of surgical debridements, multiple courses of sterile-maggot therapy were introduced at a late stage to stabilize the wounds. The patient died of recurrent wound infections and sepsis paralleled by exacerbations of renal malfunction. CONCLUSIONS: The role of renal disease in vascular complications is discussed. Sterile-maggot debridement may constitute a therapy for the ulcerated calciphylaxis at an earlier stage, i.e. when first ulcerations appear

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi‐taxa and multi‐scale approach

    Get PDF
    Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turno-ver of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the en-vironmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size.Location: Temperate forests in five regions across Germany.Methods: In the inter-region analysis, the independent and shared effects of the re-gional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined.Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less disper-sive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physi-ognomy, but the relative importance of the latter increased with increasing trophic position and body size.Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conserva-tion frameworks targeting biodiversity of multiple groups should cover both envi-ronmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy

    Recent astrophysical and accelerator based results on the Hadronic Equation of State

    Full text link
    In astrophysics as well as in hadron physics progress has recently been made on the determination of the hadronic equation of state (EOS) of compressed matter. The results are contradictory, however. Simulations of heavy ion reactions are now sufficiently robust to predict the stiffness of the (EOS) from (i) the energy dependence of the ratio of K+K^+ from Au+Au and C+C collisions and (ii) the centrality dependence of the K+K^+ multiplicities. The data are best described with a compressibility coefficient at normal nuclear matter density κ\kappa around 200 MeV, a value which is usually called ``soft'' The recent observation of a neutron star with a mass of twice the solar mass is only compatible with theoretical predictions if the EOS is stiff. We review the present situation.Comment: invited talk Strange Quark Matter Conference SQM06 in Los Angele

    Controlled In Meso Phase Crystallization – A Method for the Structural Investigation of Membrane Proteins

    Get PDF
    We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time

    Impaired Ca2+-handling in HIF-1α+/− mice as a consequence of pressure overload

    Get PDF
    The hypoxia-inducible factor (HIF)-1 is critically involved in the cellular adaptation to a decrease in oxygen availability. The influence of HIF-1α for the development of cardiac hypertrophy and cardiac function that occurs in response to sustained pressure overload has been mainly attributed to a challenged cardiac angiogenesis and cardiac hypertrophy up to now. Hif-1α+/+ and Hif-1α+/− mice were studied regarding left ventricular hypertrophy and cardiac function after being subjected to transverse aortic constriction (TAC). After TAC, both Hif-1α+/+ and Hif-1α+/− mice developed left ventricular hypertrophy with increased posterior wall thickness, septum thickness and increased left ventricular weight to a similar extent. No significant difference in cardiac vessel density was observed between Hif-1α+/+ and Hif-1α+/− mice. However, only the Hif-1α+/− mice developed severe heart failure as revealed by a significantly reduced fractional shortening mostly due to increased end-systolic left ventricular diameter. On the single cell level this correlated with reduced myocyte shortenings, decreased intracellular Ca2+-transients and SR-Ca2+ content in myocytes of Hif-1a+/− mice. Thus, HIF-1α can be critically involved in the preservation of cardiac function after chronic pressure overload without affecting cardiac hypertrophy. This effect is mediated via HIF-dependent modulation of cardiac calcium handling and contractility
    corecore