53 research outputs found

    A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles

    Get PDF
    Background : Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles. Methods : Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey’s test. Results : The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles. Conclusions : An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles

    Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction

    Get PDF
    The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction

    Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function

    Get PDF
    In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αβMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials

    Muscle RANK is a key regulator of calcium storage, SERCA activity, and function of fast-twitch skeletal muscles

    Get PDF
    Receptor-activator of nuclear factor kB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG)are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion (RANKmko) has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscle preventing the loss of maximum specific force while promoting muscle atrophy, fatigability and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 (Stim1) content, a calcium sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus (Sol) muscles. These data identify a novel role for RANK as a key regulator of calcium storage and SERCA activity, ultimately affecting denervated skeletal muscle function

    Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy

    Get PDF
    The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), where mutations in the dystrophin gene disrupts the firm adhesion. In DMD patients, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in DMD patients, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina, and increases the efficiency of myogenesis. Galectin-3 is an oligosaccharide-binding protein and known to be involved in cell–cell interactions and cell–matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle while its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the ligands (oligosaccharides) of galectin-3, promotes myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased the muscle force production. Our results demonstrate that treatment with N-acetylglucosamine can mitigate the burden of DMD

    Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness

    Get PDF
    Background The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. Methods In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. Results We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Conclusions Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation

    Accumulation of PDGF(+) cells and internalisation of the PDGF receptor at myotendinous junction following modified hindlimb muscle use in the rat

    No full text
    Morphological observations have shown previously that myotendinous junctions (MTJs) are sites where the associations between the cytoskeleton and the cell membrane are extensively remodelled during muscle growth and modified mechanical loading. The platelet derived growth factor (PDGF) molecule has been shown to induce cytoskeletal remodelling at focal contact sites of myoblasts in culture, the analogous structures of MTJs. The goals of the study were to determine whether PDGF is synthesised by mononuclear cells and whether PDGF receptors are internalised at the MTJs of the soleus muscle experiencing reloading. We also examined whether ED2(+) macrophages that are nonphagocytic and activated inflammatory cells at MTJs during reloading secrete PDGF. Results obtained by immunohistochemistry showed that there was an increase in the number of cells expressing PDGF at remodelling MTJs and that the ED2(+) macrophage population does not express PDGF at MTJs. According to morphological criteria, fibroblasts would be the logical candidates to secrete PDGF molecules near MTJs. Furthermore, the modification in muscle loading resulted in internalisation of PDGF receptors concentrated at the MTJ which accumulated predominantly around muscle nuclei. The enrichment of PDGF receptors and PDGF(+) cells at MTJs and the internalisation of PDGF receptors during remodelling of MTJs suggest that PDGF may influence remodelling of MTJs following modified muscle use
    corecore