39 research outputs found
Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples.
On-chip detection of low abundant protein biomarkers is of interest to enable point-of-care diagnostics. Using a simple form of integration, we have realized an integrated microfluidic platform for the detection of prostate specific antigen (PSA), directly in anti-coagulated whole blood. We combine acoustophoresis-based separation of plasma from undiluted whole blood with a miniaturized immunoassay system in a polymer manifold, demonstrating improved assay speed on our Integrated Acoustic Immunoaffinity-capture (IAI) platform. The IAI platform separates plasma from undiluted whole blood by means of acoustophoresis and provides cell free plasma of clinical quality at a rate of 10 uL/min for an online immunoaffinity-capture of PSA on a porous silicon antibody microarray. The whole blood input (hematocrit 38-40%) rate was 50 μl min(-1) giving a plasma volume fraction yield of ≈33%. PSA was immunoaffinity-captured directly from spiked female whole blood samples at clinically significant levels of 1.7-100 ng ml(-1) within 15 min and was subsequently detected via fluorescence readout, showing a linear response over the entire range with a coefficient of variation of 13%
Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML
Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051
Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia
Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML
SOCS2 is dispensable for BCR/ABL1-induced chronic myeloid leukemia-like disease and for normal hematopoietic stem cell function
Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine signaling and is highly expressed in primary bone marrow (BM) cells from patients with chronic myeloid leukemia (CML). However, it has not been established whether SOCS2 is involved in CML, caused by the BCR/ABL1 fusion gene, or important for normal hematopoietic stem cell (HSC) function. In this study, we demonstrate that although Socs2 was found to be preferentially expressed in long-term HSCs, Socs2-deficient HSCs were indistinguishable from wild-type HSCs when challenged in competitive BM transplantation experiments. Furthermore, by using a retroviral BCR/ABL1-induced mouse model of CML, we demonstrate that SOCS2 is dispensable for the induction and propagation of the disease, suggesting that the SOCS2-mediated feedback regulation of the JAK/STAT pathway is deficient in BCR/ABL1-induced CML.N Hansen, H Ågerstam, M Wahlestedt, N Landberg, M Askmyr, M Ehinger, M Rissler, H Lilljebjörn, P Johnels, J Ishiko, J V Melo, W S Alexander, D Bryder, M Järås, and T Fioreto
Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective.
Protein microarrays are powerful tools to quantify and characterize proteins in multiplex assays. They have great potential within clinical diagnostics and prognostics, as they minimize consumption of both analyte and biological sample. Assays that do not require labeling of the biological specimen, henceforth called label-free, are vital for ease of clinical sample processing. Here, we evaluate two label-free techniques, reverse-phase and sandwich antibody assays, using microarrays on high-performance porous silicon surfaces and fluorescence detection. In view of increasing interest in reverse microarrays, this paper focuses on analytical sensitivity of the reverse assays compared to the more complex but highly sensitive sandwich assay. Sensitivity, linear range, and reproducibility of the two assays were compared using prostate-specific antigen (PSA) in buffer. The sandwich assay displayed 5 orders of magnitude lower detection limit (0.7 ng/mL) compared to the reverse assay (70 microg/mL). PSA at 50 nM (1.5 microg/mL) in cell lysates was detected by the sandwich assay but not by the reverse assay, demonstrating again a far lower detection limit for sandwich microarrays. In independent assay runs of PSA spiked in female serum, the sandwich assay had good linearity (R2 > 0.99) and reproducibility (coefficient of variation < or =15%), and the detection limit could be improved to 0.14 ng/mL. Without further signal amplification, the sandwich assay would be our choice for PSA analysis of clinical samples using a microarray technology platform
Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective.
Protein microarrays are powerful tools to quantify and characterize proteins in multiplex assays. They have great potential within clinical diagnostics and prognostics, as they minimize consumption of both analyte and biological sample. Assays that do not require labeling of the biological specimen, henceforth called label-free, are vital for ease of clinical sample processing. Here, we evaluate two label-free techniques, reverse-phase and sandwich antibody assays, using microarrays on high-performance porous silicon surfaces and fluorescence detection. In view of increasing interest in reverse microarrays, this paper focuses on analytical sensitivity of the reverse assays compared to the more complex but highly sensitive sandwich assay. Sensitivity, linear range, and reproducibility of the two assays were compared using prostate-specific antigen (PSA) in buffer. The sandwich assay displayed 5 orders of magnitude lower detection limit (0.7 ng/mL) compared to the reverse assay (70 microg/mL). PSA at 50 nM (1.5 microg/mL) in cell lysates was detected by the sandwich assay but not by the reverse assay, demonstrating again a far lower detection limit for sandwich microarrays. In independent assay runs of PSA spiked in female serum, the sandwich assay had good linearity (R2 > 0.99) and reproducibility (coefficient of variation < or =15%), and the detection limit could be improved to 0.14 ng/mL. Without further signal amplification, the sandwich assay would be our choice for PSA analysis of clinical samples using a microarray technology platform
Porous silicon antibody microarrays for quantitative analysis: measurement of free and total PSA in clinical plasma samples.
The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44 ng/ml, LOD: 0.14 ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9 ng/ml, LOD: 0.47 ng/ml) and total PSA (dynamic range: 0.87-295 ng/ml, LOD: 0.76 ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyzes several prostate cancer biomarkers simultaneously
ENSAM: Europium Nanoparticles for Signal enhancement of Antibody Microarrays on nanoporous silicon.
To improve the sensitivity of antibody microarray assays, we developed ENSAM (Europium Nanoparticles for Signal enhancement of Antibody Microarrays). ENSAM is based on two nanomaterials. The first is polystyrene nanoparticles incorporated with europium chelate (beta-diketone) and coated with streptavidin. The multiple fluorophores incorporated into each nanoparticle should increase signal obtained from a single binding event. The second nanomaterial is array surfaces of nanoporous silicon, which creates high capacity for antibody adsorption. Two antibody microarray assays were compared: ENSAM and use of streptavidin labeled with a nine-dentate europium chelate. Analyzing biotinylated prostate-specific antigen (PSA) spiked into human female serum, ENSAM yielded a 10-fold signal enhancement compared to the streptavidin-europium chelate. Similarly, we observed around 1 order of magnitude greater sensitivity for the ENSAM assay (limit of detection < or = 0.14 ng/mL, dynamic range > 10(5)) compared to the streptavidin-europium chelate assay (limit of detection < or = 0.7 ng/mL, dynamic range > 10(4)). Analysis of a titration series showed strong linearity of ENSAM ( R2 = 0.99 by linear regression). This work demonstrates the novel utility of nanoparticles with time-resolved fluorescence for signal enhancement of antibody microarrays, requiring as low as 100-200 zmol biotinylated PSA per microarray spot. In addition, proof of principle was shown for analyzing PSA in plasma obtained from patients undergoing clinical PSA-testing