4 research outputs found

    Electrical signalling and plant response to herbivory: A short review

    No full text
    For a long time, electrical signaling was neglected at the expense of signaling studies in plants being concentrated with chemical and hydraulic signals. Studies conducted in recent years have revealed that plants are capable of emitting, processing, and transmitting bioelectrical signals to regulate a wide variety of physiological functions. Many important biological and physiological phenomena are accompanied by these cellular electrical manifestations, which supports the hypothesis about the importance of bioelectricity as a fundamental ‘model’ for response the stresses environmental and for activities regeneration of these organisms. Electrical signals have also been characterized and discriminated against in genetically modified plants under stress mediated by sucking insects and/or by the application of systemic insecticides. Such results can guide future studies that aim to elucidate the factors involved in the processes of resistance to stress and plant defense, thus aiding in the development of successful strategies in integrated pest management. Therefore, this mini review includes the results of studies aimed at electrical signaling in response to biotic stress. We also demonstrated how the generation and propagation of electrical signals takes place and included a description of how these electrical potentials are measured

    Effects of temperature on the feeding behavior of Alabama argillacea (HĂŒbner) (Lepidoptera: Noctuidae) on Bt and non-Bt cotton plants

    No full text
    <div><p>ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (HĂŒbner) (Lepidoptera: Noctuidae) larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard) and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.</p></div
    corecore