194 research outputs found

    Management of radiation dermatitis in patients receiving cetuximab and radiotherapy for locally advanced squamous cell carcinoma of the head and neck: proposals for a revised grading system and consensus management guidelines

    Get PDF
    Background: Radiation dermatitis developing in patients receiving cetuximab concomitantly with radiotherapy for locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) is now recognized to have different pathophysiological and clinical characteristics to the radiation dermatitis associated with radiotherapy or concomitant chemotherapy and radiotherapy. Current grading tools were not designed to grade this type of radiation dermatitis; their use may lead to misclassification of reactions and inappropriate management strategies, potentially compromising cancer treatment. Patients and methods: An advisory board of seven leading European specialists (three medical oncologists, three radiation oncologists and a dermatologist) with extensive experience of the use of cetuximab plus radiotherapy produced consensus guidelines for the grading and management of radiation dermatitis in patients receiving cetuximab plus radiotherapy. Results: Modifications to the current, commonly used National Cancer Institute—Common Terminology Criteria for Adverse Events version 4.3 for grading radiation dermatitis were proposed. Updated management guidelines, building on previously published guidelines from 2008, were also proposed. Conclusions: The proposed revisions to the grading system and updated management guidelines described here represent important developments toward the more appropriate grading and effective management of radiation dermatitis in patients receiving cetuximab plus radiotherapy for LA SCCH

    Sunitinib induced pyoderma gangrenosum-like ulcerations

    Get PDF
    Pyoderma gangrenosum is a non-infectious neutrophilic skin disease commonly associated with underlying systemic diseases. Histopathological and laboratory diagnostics are unspecific in the majority of the cases and the diagnosis is made in accordance with the clinical picture. Here, we report the case of a 69-year old man with progredient pyoderma gangrenosum-like ulcerations under treatment with sunitinib due to hepatocellular carcinoma. A conventional ulcer therapy did not lead to a regression of the lesions. Solely cessation of sunitinib therapy resulted in an improvement of the ulcerations. Sunitinib is a multikinase inhibitor that targets the PDGF-α - and -β-, VEGF-1-3-, KIT-, FLT3-, CSF-1- and RET-receptor, thereby impairing tumour proliferation, pathological angiogenesis and metastasation. Here, we demonstrate that pyoderma gangrenosum-like ulcers may represent a serious side effect of sunitinib-based anti-cancer treatment

    Interleukin-26 activates macrophages and facilitates killing of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms

    TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26.

    Get PDF
    Interleukin 17-producing helper T cells (TH17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death

    Characterization of the skin microbiota in bullous pemphigoid patients and controls reveals novel microbial indicators of disease

    Get PDF
    Introduction: Bullous pemphigoid (BP) is the most common autoimmune blistering disease. It predominately afflicts the elderly and is significantly associated with increased mortality. The observation of age-dependent changes in the skin microbiota as well as its involvement in other inflammatory skin disorders suggests that skin microbiota may play a role in the emergence of BP blistering. We hypothesize that changes in microbial diversity associated with BP might occur before the emergence of disease lesions, and thus could represent an early indicator of blistering risk. Objectives: The present study aims to investigate potential relationships between skin microbiota and BP and elaborate on important changes in microbial diversity associated with blistering in BP. Methods: The study consisted of an extensive sampling effort of the skin microbiota in patients with BP and age- and sex-matched controls to analyze whether intra-individual, body site, and/or geographical variation correlate with changes in skin microbial composition in BP and/or blistering status. Results: We find significant differences in the skin microbiota of patients with BP compared to that of controls, and moreover that disease status rather than skin biogeography (body site) governs skin microbiota composition in patients with BP. Our data reveal a discernible transition between normal skin and the skin surrounding BP lesions, which is characterized by a loss of protective microbiota and an increase in sequences matching Staphylococcus aureus, a known inflammation-promoting species. Notably, Staphylococcus aureus is ubiquitously associated with BP disease status, regardless of the presence of blisters. Conclusion: The present study suggests Staphylococcus aureus may be a key taxon associated with BP disease status. Importantly, we however find contrasting patterns in the relative abundances of Staphylococcus hominis and Staphylococcus aureus reliably discriminate between patients with BP and matched controls. This may serve as valuable information for assessing blistering risk and treatment outcomes in a clinical setting

    Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles

    Get PDF
    Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+^{+} tumours formed multiple liver and spleen metastases, while Tspan8^{-} tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+^{+} cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer

    Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor

    Get PDF
    Several reports have indicated that the chemokine receptor CCR5 and its ligands, especially CCL5 (formerly known as RANTES), may play a role in the pathogenesis of psoriasis. The purpose of this investigation was to examine the expression of CCR5 and its ligands in chronic plaque psoriasis and to evaluate the clinical and immunohistochemical effect of a CCR5 receptor inhibitor. Immunohistochemical analysis showed low but significant increased total numbers of CCR5 positive cells in epidermis and dermis of lesional skin in comparison to non-lesional skin. However, relative expression of CCR5 proportional to the cells observed revealed that the difference between lesional and non-lesional skin was only statistically significant in the epidermis for CD3 positive cells and in the dermis for CD68 positive cells. Quantification of mRNA by reverse transcriptase-polymerase chain reaction only showed an increased expression of CCL5 (RANTES) in lesional skin. A randomized placebo-controlled clinical trial in 32 psoriasis patients revealed no significant clinical effect and no changes at the immunohistochemical level comparing patients treated with placebo or a CCR5 inhibitor SCH351125. We conclude that although CCR5 expression is increased in psoriatic lesions, this receptor does not play a crucial role in the pathogenesis of psoriasis

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy

    Plasmin Plays an Essential Role in Amplification of Psoriasiform Skin Inflammation in Mice

    Get PDF
    BACKGROUND: Although increased levels of plasminogen activators have been found in psoriatic lesions, the role of plasmin converted from plasminogen by plasminogen activators in pathogenesis of psoriasis has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the contribution of plasmin to amplification of inflammation in patients with psoriasis. We found that plasminogen was diminished, but that the amount and activity of its converted product plasmin were markedly increased in psoriasis. Moreover, annexin II, a receptor for plasmin was dramatically increased in both dermis and epidermis in psoriasis. Plasmin at sites of inflammation was pro-inflammatory, eliciting production of inflammatory factors, including CC chemokine ligand 20 (CCL20) and interleukin-23 (IL-23), that was mediated by the nuclear factor-kappaB (NF-κB) signaling pathway and that had an essential role in the recruitment and activation of pathogenic C-C chemokine receptor type 6 (CCR6)+ T cells. Moreover, intradermal injection of plasmin or plasmin together with recombinant monocyte/macrophage chemotactic protein-1 (MCP-1) resulted in induction of psoriasiform skin inflammation around the injection sites with several aspects of human psoriasis in mice. CONCLUSIONS/SIGNIFICANCE: Plasmin converted from plasminogen by plasminogen activators plays an essential role in amplification of psoriasiform skin inflammation in mice, and targeting plasmin receptor--annexin II--may harbor therapeutic potential for the treatment of human psoriasis
    corecore