292 research outputs found

    Skills of different mesoscale models over Indian region during monsoon season: Forecast errors

    Get PDF
    Performance of four mesoscale models namely, the MM5, ETA, RSM and WRF, run at NCMRWF for short range weather forecasting has been examined during monsoon-2006. Evaluation is carried out based upon comparisons between observations and day-1 and day-3 forecasts of wind, temperature, speci.c humidity, geopotential height, rainfall, systematic errors, root mean square errors and specific events like the monsoon depressions. It is very difficult to address the question of which model performs best over the Indian region? An honest answer is 'none'. Perhaps an ensemble approach would be the best. However, if we must make a final verdict, it can be stated that in general, (i) the WRF is able to produce best All India rainfall prediction compared to observations in the day-1 forecast and, the MM5 is able to produce best All India rainfall forecasts in day-3, but ETA and RSM are able to depict the best distribution of rainfall maxima along the west coast of India, (ii) the MM5 is able to produce least RMSE of wind and geopotential fields at most of the time, and (iii) the RSM is able to produce least errors in the day-1 forecasts of the tracks, while the ETA model produces least errors in the day-3 forecasts

    Gene-based multiple trait analysis for exome sequencing data

    Get PDF
    The common genetic variants identified through genome-wide association studies explain only a small proportion of the genetic risk for complex diseases. The advancement of next-generation sequencing technologies has enabled the detection of rare variants that are expected to contribute significantly to the missing heritability. Some genetic association studies provide multiple correlated traits for analysis. Multiple trait analysis has the potential to improve the power to detect pleiotropic genetic variants that influence multiple traits. We propose a gene-level association test for multiple traits that accounts for correlation among the traits. Gene- or region-level testing for association involves both common and rare variants. Statistical tests for common variants may have limited power for individual rare variants because of their low frequency and multiple testing issues. To address these concerns, we use the weighted-sum pooling method to test the joint association of multiple rare and common variants within a gene. The proposed method is applied to the Genetic Association Workshop 17 (GAW17) simulated mini-exome data to analyze multiple traits. Because of the nature of the GAW17 simulation model, increased power was not observed for multiple-trait analysis compared to single-trait analysis. However, multiple-trait analysis did not result in a substantial loss of power because of the testing of multiple traits. We conclude that this method would be useful for identifying pleiotropic genes

    Detecting functional rare variants by collapsing and incorporating functional annotation in Genetic Analysis Workshop 17 mini-exome data

    Get PDF
    Association studies using tag SNPs have been successful in detecting disease-associated common variants. However, common variants, with rare exceptions, explain only at most 5–10% of the heritability resulting from genetic factors, which leads to the common disease/rare variants assumption. Indeed, recent studies using sequencing technologies have demonstrated that common diseases can be due to rare variants that could not be systematically studied earlier. Unfortunately, methods for common variants are not optimal if applied to rare variants. To identify rare variants that affect disease risk, several investigators have designed new approaches based on the idea of collapsing different rare variants inside the same genomic block (e.g., the same gene or pathway) to enrich the signal. Here, we consider three different collapsing methods in the multimarker regression model and compared their performance on the Genetic Analysis Workshop 17 data using the consistency of results across different simulations and the cross-validation prediction error rate. The comparison shows that the proportion collapsing method seems to outperform the other two methods and can find both truly associated rare and common variants. Moreover, we explore one way of incorporating the functional annotations for the variants in the data that collapses nonsynonymous and synonymous variants separately to allow for different penalties on them. The incorporation of functional annotations led to higher sensitivity and specificity levels when the detection results were compared with the answer sheet. The initial analysis was performed without knowledge of the simulating model

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac

    EPHA2 Polymorphisms and Age-Related Cataract in India

    Get PDF
    Objective: We investigated whether previously reported single nucleotide polymorphisms (SNPs) of EPHA2 in European studies are associated with cataract in India. Methods: We carried out a population-based genetic association study. We enumerated randomly sampled villages in two areas of north and south India to identify people aged 40 and over. Participants attended a clinical examination including lens photography and provided a blood sample for genotyping. Lens images were graded by the Lens Opacification Classification System (LOCS III). Cataract was defined as a LOCS III grade of nuclear >= 4, cortical >= 3, posterior sub-capsular (PSC) >= 2, or dense opacities or aphakia/pseudophakia in either eye. We genotyped SNPs rs3754334, rs7543472 and rs11260867 on genomic DNA extracted from peripheral blood leukocytes using TaqMan assays in an ABI 7900 real-time PCR. We used logistic regression with robust standard errors to examine the association between cataract and the EPHA2 SNPs, adjusting for age, sex and location. Results: 7418 participants had data on at least one of the SNPs investigated. Genotype frequencies of controls were in Hardy-Weinberg Equilibrium (p > 0.05). There was no association of rs3754334 with cataract or type of cataract. Minor allele homozygous genotypes of rs7543472 and rs11260867 compared to the major homozygote genotype were associated with cortical cataract, Odds ratio (OR) = 1.8, 95% Confidence Interval (CI) (1.1, 3.1) p = 0.03 and 2.9 (1.2, 7.1) p = 0.01 respectively, and with PSC cataract, OR = 1.5 (1.1, 2.2) p = 0.02 and 1.8 (0.9, 3.6) p = 0.07 respectively. There was no consistent association of SNPs with nuclear cataract or a combined variable of any type of cataract including operated cataract. Conclusions: Our results in the Indian population agree with previous studies of the association of EPHA2 variants with cortical cataracts. We report new findings for the association with PSC which is particularly prevalent in Indians

    EPHA2 Is Associated with Age-Related Cortical Cataract in Mice and Humans

    Get PDF
    Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age

    Induced autotetraploidy in chickpea (Cicer arietinum L.)

    Get PDF
    In chickpea, out of three colchicine concentrations and two treatment durations used (combinations of 0.25, 0.05, 0.025% colchicine and 4 and 6 h duration), seed treatment with 0.25% for 4 h proved to be the most effective in producing autotetraploids. Colchicine treatment on seedlings failed. The induced tetraploidy was accompanied by larger leaves, flowers, stomata, pollen grains and seeds. Mean percentage stainable pollen and podset were reduced, but some plants had relatively normal meiosis and produced as many pods as the diploid parent, indicating the potential of induced autotetraploids in chickpea improvement

    Single nucleotide polymorphism-based genome-wide linkage analysis in Japanese atopic dermatitis families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atopic dermatitis develops as a result of complex interactions between several genetic and environmental factors. To date, 4 genome-wide linkage studies of atopic dermatitis have been performed in Caucasian populations, however, similar studies have not been done in Asian populations. The aim of this study was to identify chromosome regions linked to atopic dermatitis in a Japanese population.</p> <p>Methods</p> <p>We used a high-density, single nucleotide polymorphism genotyping assay, the Illumina BeadArray Linkage Mapping Panel (version 4) comprising 5,861 single nucleotide polymorphisms, to perform a genome-wide linkage analysis of 77 Japanese families with 111 affected sib-pairs with atopic dermatitis.</p> <p>Results</p> <p>We found suggestive evidence for linkage with 15q21 (LOD = 2.01, NPL = 2.87, <it>P </it>= .0012) and weak linkage to 1q24 (LOD = 1.26, NPL = 2.44, <it>P </it>= .008).</p> <p>Conclusion</p> <p>We report the first genome-wide linkage study of atopic dermatitis in an Asian population, and novel loci on chromosomes 15q21 and 1q24 linked to atopic dermatitis. Identification of novel causative genes for atopic dermatitis will advance our understanding of the pathogenesis of atopic dermatitis.</p
    corecore