17 research outputs found

    Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing

    Get PDF
    Objective\textbf{Objective} Arcuate proopiomelanocortin (POMC) neurons are critical nodes in the control of body weight. Often characterized simply as direct targets for leptin, recent data suggest a more complex architecture. Methods\textbf{Methods} Using single cell RNA sequencing, we have generated an atlas of gene expression in murine POMC neurons. Results\textbf{Results} Of 163 neurons, 118 expressed high levels of Pomc\textit{Pomc} with little/no Agrp expression and were considered “canonical” POMC neurons (P+^{+}). The other 45/163 expressed low levels of Pomc\textit{Pomc} and high levels of Agrp\textit{Agrp} (A+^{+}P+_{+}). Unbiased clustering analysis of P+^{+} neurons revealed four different classes, each with distinct cell surface receptor gene expression profiles. Further, only 12% (14/118) of P+^{+} neurons expressed the leptin receptor (Lepr\textit{Lepr}) compared with 58% (26/45) of A+^{+}P+_{+} neurons. In contrast, the insulin receptor (Insr\textit{Insr}) was expressed at similar frequency on P+^{+} and A+^{+}P+_{+} neurons (64% and 55%, respectively). Conclusion\textbf{Conclusion} These data reveal arcuate POMC neurons to be a highly heterogeneous population. Accession Numbers: GSE92707.This work was supported by the UK Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1 & MRC_MC_UU_12012/5), a Wellcome Trust Strategic Award (100574/Z/12/Z), and the Helmholtz Alliance ICEMED

    Biological influence of Hakai in cancer: a 10-year review

    Get PDF
    In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer
    corecore