64 research outputs found

    First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications

    Get PDF
    A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma

    Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage

    Get PDF
    Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To nineteenth- and early twentieth-century geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subsequent increases in detailed knowledge about the fragmentary outcrop geology from islands distributed around the margins of the Scotia Sea, and later their interpretation in the light of the plate tectonic paradigm led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses between Jurassic–Cretaceous basin floor and fill sequences in South Georgia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those regions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98 % of the Scotia Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long-used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period. It is, however, possible to reinterpret the geology of those two regions in terms of the plate kinematic history that the seafloor has preserved

    Life After Being a Pathology Department Chair

    No full text
    Although there is a considerable literature on transition of faculty members to the position of department chair, there is a dearth of publications about transitioning from the chair to other activities including retirement. The Association of Pathology Chairs senior fellows (all of whom are former chairs of academic departments of pathology) made this topic a focus of discussion at the Association of Pathology Chairs 2016 Annual Meeting. Of the 33 senior fellows engaged in this discussion, following their time as chairs, a small majority (18) transitioned to other administrative posts within or outside the university, while the others either returned to the active faculty (7) or retired (8). The motivating factors and influences for transitioning from the chair were probed along with the processes used in executing the transition, such as the development of transition plans. The reasons for selecting the specific type of postchair activity were also investigated. There was extraordinary diversity in the type of post-chair activities pursued. To our knowledge, no other medical specialty has examined these issues, which may be potentially relevant for the career planning of active chairs

    Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer

    Get PDF
    The influence of a GaAsSb capping layer on the structural properties of self-assembled InAs/GaAs quantum dots (QDs) is studied on the at. scale by cross-sectional scanning tunneling microscopy. QDs capped with GaAs0.75Sb0.25 exhibit a full pyramidal shape and a height more than twice that of the typical GaAs-capped QDs, indicating that capping with GaAsSb suppresses dot decompn. This behavior is most likely related to the reduced lattice mismatch between the dot and the capping layer. [on SciFinder (R)

    TeachingXchange

    No full text
    In dem Sammelband beschreiben Vertreter:innen unterschiedlicher Fächer experimentelle Lehrveranstaltungen an Hochschulen. Die Ideen und Konzepte werden auf eine didaktische Metaebene gehoben, um sie in anderen Disziplinen zu adaptieren

    Atomic scale study of the impact of the strain and composition of the capping layer on the formation of InAs quantum dots

    Get PDF
    The impact of the capping material on the structural properties of self-assembled InAs quantum dots (QDs) was studied at the at. scale by cross-sectional scanning tunneling microscopy. Capping with lattice matched layers and with strained layers was analyzed. When the different capping materials are lattice matched to the substrate, the differences in the QD properties can be dominated by chem. effects: InAs/InP QDs capped with InP have a 2 ML smaller height than those capped with InGaAs or InGaAsP due to As/P exchange induced decompn. The height of the dots is found to be much more strongly affected when strained capping layers are used. InAs/GaAs, QDs capped with InGaAs are considerably taller than typical GaAs-capped dots. When GaAsSb is used as the capping layer, the dots are almost full pyramids with a height of 9.5 nm, indicating that dot decompn. is almost completely suppressed. This indicates that the dot/capping layer strain plays a major role in inducing dot decompn. during capping. [on SciFinder (R)
    • …
    corecore