11 research outputs found

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from sNN=7.7\sqrt{s_{NN}}=7.7 to 200 GeV

    Full text link
    Measurements of midrapidity charged particle multiplicity distributions, dNch/dηdN_{\rm ch}/d\eta, and midrapidity transverse-energy distributions, dET/dηdE_T/d\eta, are presented for a variety of collision systems and energies. Included are distributions for Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu++Cu collisions at sNN=200\sqrt{s_{_{NN}}}=200 and 62.4 GeV, Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, U++U collisions at sNN=193\sqrt{s_{_{NN}}}=193 GeV, dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, NpartN_{\rm part}, and the number of constituent quark participants, NqpN_{q{\rm p}}. For all AA++AA collisions down to sNN=7.7\sqrt{s_{_{NN}}}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with NqpN_{q{\rm p}} than scaling with NpartN_{\rm part}. Also presented are estimates of the Bjorken energy density, εBJ\varepsilon_{\rm BJ}, and the ratio of dET/dηdE_T/d\eta to dNch/dηdN_{\rm ch}/d\eta, the latter of which is seen to be constant as a function of centrality for all systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.

    Measurement of jet-medium interactions via direct photon-hadron correlations in Au++Au and dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present direct photon-hadron correlations in 200 GeV/A Au++Au, dd++Au and pp++pp collisions, for direct photon pTp_T from 5--12 GeV/cc, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in dd++Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au++Au compared to pp++pp and dd++Au. As the momentum fraction decreases, the yield of hadrons in Au++Au increases to an excess over the yield in pp++pp collisions. The excess is at large angles and at low hadron pTp_T and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.Comment: 578 authors from 80 institutions, 11 pages, 7 figures, data from 2007, 2008, 2010, and 2011. v2 is version accepted for publication in Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurements of identified particle anisotropic flow in Cu plus Au and U plus U collisions by PHENIX experiment

    Get PDF

    Measurement of jet-medium interactions via direct photon-hadron correlations in Au+Au and d+Au collisions at √sNN=200 GeV

    No full text
    We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au and p+p collisions, for direct photon pT from 5--12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets

    Measurement of jet-medium interactions via direct photon-hadron correlations in Au++Au and dd ++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    No full text
    International audienceWe present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets

    Activity on Urinary Tract

    No full text

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from s

    No full text
    corecore