36 research outputs found
The role of GTP in transient splitting of 70S ribosomes by RRF (ribosome recycling factor) and EF-G (elongation factor G).
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 microM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes
The ribosome-recycling step: consensus or controversy?
Ribosome recycling, the last step in translation, is now accepted as an essential process for prokaryotes. In 2005, three laboratories showed that ribosome-recycling factor (RRF) and elongation factor G (EF-G) cause dissociation of ribosomes into subunits, solving the long-standing problem of how this essential step of translation occurs. However, there remains ongoing controversy regarding the other actions of RRF and EF-G during ribosome recycling. We propose that the available data are consistent with the notion that RRF and EF-G not only split ribosomes into subunits but also participate directly in the release of deacylated tRNA and mRNA for the next round of translation
Structural insights into initial and intermediate steps of the ribosome-recycling process
The ribosome recycling factor (RRF) and elongation factor G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-EM structures of the PoTCā¢RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven toward the tRNA-exit (E) site, with a large rotational movement of domain II of RRF toward the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adapt unusual conformations. Furthermore, binding of EF-G to the PoTCā¢RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC, and (ii) the modes of action of EF-G during tRNA translocation and ribosome recycling steps are markedly different
Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons.
During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of engineered lacZ (Ī²-galactosidase) reporter gene harboring contiguous AGA codons close to the initiation codon or at internal codon positions together with minigene ATGAGATAA accompanied by reduced peptidyl-tRNA hydrolase (Pth). Our results showed accumulations of peptidyl-tRNA associated with ribosomes in mutants for release factors (RF1, RF2, and RF3), ribosome recycling factor (RRF), Pth, and transfer-messenger RNA (tmRNA), implying that each of these factors cooperate in rescuing stalled ribosomes. The role of these factors in ribosome releasing from the stalled complex may vary depending on the length of the peptide in the peptidyl-tRNA. RF3 and RRF rescue stalled ribosomes by drop-off of peptidyl-tRNA, while RF1, RF2 (in the absence of termination codon), or Pth may rescue by hydrolyzing the associated peptidyl-tRNA. This is followed by the disassembly of the ribosomal complex of tRNA and mRNA by RRF and elongation factor G
Antioxidant Ī±-tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes
AbstractWe have shown recently that oxidative stress by chronic hyperglycemia damages the pancreatic Ī²-cells of GK rats, a model of non-obese type 2 diabetes, which may worsen diabetic condition and suggested the administration of antioxidants as a supportive therapy. To determine if natural antioxidant Ī±-tocopherol (vitamin E) has beneficial effects on the glycemic control of type 2 diabetes, GK rats were fed a diet containing 0, 20 or 500 mg/kg diet Ī±-tocopherol. Intraperitoneal glucose tolerance test revealed a significant increment of insulin secretion at 30 min and a significant decrement of blood glucose levels at 30 and 120 min after glucose loading in the GK rats fed with high Ī±-tocopherol diet. The levels of glycated hemoglobin A1c, an indicator of glycemic control, were also reduced. Vitamin E supplementation clearly ameliorated diabetic control of GK rats, suggesting the importance of not only dietary supplementation of natural antioxidants but also other antioxidative intervention as a supportive therapy of type 2 diabetic patients
Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: Evidence for the release of the mRNA by RRF and EF-G.
A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site