752 research outputs found

    Misalignment between cold gas and stellar components in early-type galaxies

    Get PDF
    Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar populations implies that large gas reservoirs in the pre-merger star-forming pair must be depleted on short time-scales. Here we present pilot observations of atomic hydrogen gas in four blue early-type galaxies that reveal increasing spatial offsets between the gas reservoirs and the stellar components of the galaxies, with advancing post-starburst age. Emission line spectra show associated nuclear activity in two of the merged galaxies, and in one case radio lobes aligned with the displaced gas reservoir. These early results suggest that a kinetic process (possibly feedback from black hole activity) is driving the quick truncation of star formation in these systems, rather than a simple exhaustion of gas suppl

    NOTES ON MAPANIA LATIFOLIA UITTIEN (CYPERACEAE) FROM LONG BANGA, SARAWAK

    Get PDF
    Cyperaceae is one of the largest family in the Monocotyledon plant group consisting of 106 genera and approximately 5600 species throughout the world. Mapania is among the important understory genus in this family. To-date about 40 species of Mapania have been recorded for Sarawak that includes 13 newly described species. Mapania latifolia is one of four species with foliaceous involucral bract recorded in Southeast Asia and its distributed in Peninsular Malaysia and Borneo. This species tends to show tremendous variations among the populations from different elevations and localities. This preliminary study is to investigate the variation of M. latifolia from Long Banga and to compare it with the collections from other places in the Heart of Borneo project areas

    The Role of Bile in the Regulation of Exocrine Pancreatic Secretion

    Get PDF
    As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap

    A dynamic explanation for the origin of the western Mediterranean organic-rich layers

    Get PDF
    The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing

    Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere

    Full text link
    We have recently developed a new modeling capability to embed the implicit particle‐in‐cell (PIC) model iPIC3D into the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD‐EPIC) algorithm is a two‐way coupled kinetic‐fluid model. As one of the very first applications of the MHD‐EPIC algorithm, we simulate the interaction between Jupiter’s magnetospheric plasma and Ganymede’s magnetosphere. We compare the MHD‐EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede’s magnetosphere. We find that the Hall MHD and MHD‐EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD‐EPIC model. The MHD‐EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3‐D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD‐EPIC simulation was only about 4 times more than that of the Hall MHD simulation.Key PointsFirst particle‐in‐cell simulation of Ganymede’s magnetosphereThe MHD‐EPIC algorithm makes global kinetic simulations affordableMHD‐EPIC simulation suggests that Galileo observed a flux transfer event during the G8 flybyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/1/jgra52397.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/2/jgra52397_am.pd

    Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management.

    Get PDF
    Paediatric pulmonary arterial hypertension (PAH) shares common features of adult disease, but is associated with several additional disorders and challenges that require unique approaches. This article discusses recent advances, ongoing challenges and distinct approaches for the care of children with PAH, as presented by the Paediatric Task Force of the 6th World Symposium on Pulmonary Hypertension. We provide updates of the current definition, epidemiology, classification, diagnostics and treatment of paediatric PAH, and identify critical knowledge gaps. Several features of paediatric PAH including the prominence of neonatal PAH, especially in pre-term infants with developmental lung diseases, and novel genetic causes of paediatric PAH are highlighted. The use of cardiac catheterisation as a diagnostic modality and haemodynamic definitions of PAH, including acute vasoreactivity, are addressed. Updates are provided on issues related to utility of the previous classification system to reflect paediatric-specific aetiologies and approaches to medical and interventional management of PAH, including the Potts shunt. Although a lack of clinical trial data for the use of PAH-targeted therapy persists, emerging data are improving the identification of appropriate targets for goal-oriented therapy in children. Such data will likely improve future clinical trial design to enhance outcomes in paediatric PAH

    Particulate multivalent presentation of the receptor binding domain induces protective immune responses against MERS-CoV

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS). RBD-LS vaccination induced antibody responses of high magnitude and quality (avidity, MERS-CoV neutralizing capacity, and mucosal immunity) with cross-clade neutralization. The antibody responses were associated with blocking viral replication and upper and lower respiratory tract protection against MERS-CoV infection in rabbits. This arrayed multivalent presentation of the viral RBD using the antigen-SpyTag/LS-SpyCatcher is a promising MERS-CoV vaccine candidate and this platform may be applied for the rapid development of vaccines against other emerging vi

    Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region

    Get PDF
    Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.This work was supported by NIH grants R01 HL118758, R01 HL128075, R01 HL119577, R01 HL085197, U19 AI095230, UG3 OD023282 and UM1 AI114271
    corecore