53 research outputs found

    Dual Loop Line-Focusing Solar Power Plants with Supercritical Brayton Power cycles

    Full text link
    Most of the deployed commercial line-focusing solar power plants with Parabolic Troughs (PTC) or Linear Fresnel (LF) solar collectors and Rankine power cycles use a Single Loop Solar Field (SF), Configuration 1 illustrated in Fig. 2, with synthetic oil as Heat Transfer Fluid (HTF) [1, 2]. However, thermal oils maximum operating temperature should be below ~400ºC for assuring no oil degradation, hence limiting the power cycle gross efficiency up to ~38%. For overcoming this limitation Molten Salts (MS) as HTF in linear solar collectors (PTC and LF) were recently experimented in pilot facilities [3, 4]. Direct MS main drawbacks are the equipments and components material corrosion and the salts freezing temperature, requiring heat tracing to avoid any sald solidification, hence increasing the Solar Field (SF) capital investment cost and parasitic energy looses. Concentrated Solar Power plants (CSP) with Dual Loop SF are being studied since 2012 [5] for gaining the synergies between thermal oils and MS properties. In the Dual Loop SF the HTF in the primary loop is thermal oil (Dowtherm A) [6] for heating the Balance Of Plant (BOP) working fluid from ~300ºC up to ~400ºC, and a secondary loop with Solar Salt (60% NaNO3, 40% KNO3) as HTF, for boosting the working fluid temperature from ~400ºC up to 550ºC [7, 8, 9]. The CSP Dual Loop state of the art technology includes Rankine power cycles, the main innovation of this paper is the integration between Dual Loop SF and the supercritical Carbon Dioxide (s-CO2) Brayton power cycles [10], see Configurations 2 and 3 illustrated in Fig. 3a, Fig 3b. A secondary innovation studied in this paper is the integration between thermal oil HTF (Dowtherm A) in linear solar collectors, a widely validated and mature technology, with the s-CO2 Brayton power cycles. This technical solution is very cost competitive with carbon steel receiver pipes, low SF operating pressure, and no requiring any heat tracing. Two main conclusions are deducted from this researching study. Firstly we demonstrated the higher gross plant efficiency ~44.4%, with 550ºC Turbine Inlet Temperature (TIT), provided by the Dual Loop with the Simple recuperated s-CO2 Brayton cycle with reheating, in comparison with 41.8% obtained from the Dual Loop SF and subcritical water Rankine power cycle. And finally the second conclusion obtained is the selection of the most cost competitive plant configuration with a Single loop SF with Dowtherma A and a s-CO2 Brayton power cycle due to the receiver material low cost and no heat tracing for the thermal oil

    The combined and interactive effects of zinc, temperature, and phosphorus on the structure and functioning of a freshwater community

    Get PDF
    Ecotoxicological studies mainly consist of single-species experiments evaluating the effects of a single stressor. However, under natural conditions aquatic communities are exposed to a mixture of stressors. The present study aimed to identify how the toxicity of zinc (Zn) is affected by increased temperature and increased phosphorus (P) supply and how these interactions vary among species, functional groups, and community structure and function. Aquatic microcosms were subjected to 3 Zn concentrations (background, no Zn added, and 75 and 300 μg Zn/L), 2 temperatures (16–19 and 21–24 °C), and 2 different P additions (low, 0.02, and high, 0.4 mg P L−1 wk−1) for 5 wk using a full factorial design. During the study, consistent interactions between Zn and temperature were only rarely found at the species level (4%), but were frequently found at the functional group level (36%), for community structure (100%) and for community function (100%; such as dissolved organic carbon concentrations and total chlorophyll). The majority of the Zn × temperature interactions were observed at 300 μg Zn/L and generally indicated a smaller effect of Zn at higher temperature. Furthermore, no clear indication was found that high P addition by itself significantly affected the overall effects of Zn on the community at any level of organization. Interestingly, though, 90% of all the Zn × temperature interactions observed at the species, group, and community composition level were found under high P addition. Collectively, the results of our study with the model chemical Zn suggest that temperature and phosphorus loading to freshwater systems should be accounted for in risk assessment, because these factors may modify the effects of chemicals on the structure and functioning of aquatic communities, especially at higher levels of biological organization. Environ Toxicol Chem 2018;37:2413–2427.</p

    Aspects determining the risk of pesticides to wild bees: risk profiles for focal crops on three continents

    Get PDF
    In order to conduct a proper risk assessment of pesticides to bees, information is needed in three areas: the toxicity of the pesticide;the probability of bee exposure to that pesticide; andthe population dynamics of the bee species in question.Information was collected on such factors affecting pesticide risk to (primarily wild) bees in several crops in Brazil, Kenya and The Netherlands. These data were used to construct ‘risk profiles’ of pesticide use for bees in the studied cropping systems. Data gaps were identified and potential risks of pesticides to bees were compared between the crops. Initially, risk profiling aims to better identify gaps in our present knowledge. In the longer term, the established risk profiles may provide structured inputs into risk assessment models for wild and managed bees, and lead to recommendations for specific risk mitigation measures. Keywords: pesticide, exposure, risk, wild bees, risk profil

    Higher TIER bumble bees and solitary bees recommendations for a semi-field experimental design

    Get PDF
    The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented.The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented

    Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes

    Get PDF
    The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT50) of metiram was approximately 1–6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOECcommunity = 36 μg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 μg a.i./L on isolated sampling days and a NOEC of 36 μg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 μg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOECmicrocosm) was 12–36 μg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks)

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken
    corecore