31 research outputs found

    Performance evaluation of a compression algorithm for wireless sensor networks in monitoring applications

    Get PDF
    Wireless sensor network (WSN) is an emerging technology that targets multiple applications in the different environments. Its infrastructure is composed of a large number of sensor nodes with a limited physical capacity and low cost. The energy consumption must be as optimized as possible in order to extend its lifetime. The use of data compression techniques can be an advantage in the WSN context, once these techniques eliminate transmission of redundant information and consequently can be adopted to minimize the consumption of energy in the sensor nodes. WSN for monitoring applications can benefit from this technique as it may maximize the lifetime of batteries. The main motivation of this paper is to investigate the performance of a data compression algorithm for WSN in the context of monitoring applications. To validate the proposal, simulation experiments have been performed using the Network Simulator (NS-2) tool

    A Structural Linkage Between the Dimerization and Encapsidation Signals in Hiv-2 Leader Rna

    Get PDF
    The 5\u27 untranslated leader region of retroviral RNAs contains noncoding information that is essential for viral replication, including signals for transcriptional transactivation, splicing, primer binding for reverse transcription, dimerization of the genomic RNA, and encapsidation of the viral RNA into virions. These RNA motifs have considerable structural and functional overlap. in this study, we investigate the conformational dynamics associated with the use and silencing of a sequence in HIV-2 RNA that is involved in genomic RNA dimerization called stem-loop 1 (SL1) and its relationship with a flanking sequence that is known to be important for encapsidation of viral RNAs. We demonstrate that a long-distance intramolecular interaction between nucleotides located upstream of the primer-binding site domain and nucleotides encompassing the Gag translation start codon functionally silences SL1 as a dimerization element. This silencing can be relieved by mutation or by hybridization of an oligonucleotide that disrupts the long-distance interaction. Furthermore, we identify a palindrome within the packaging/encapsiclation signal psi (just 5\u27 of SL1) that can either serve as an efficient dimerization signal itself, or can mediate SL1 silencing through base pairing with SL1. These results provide a tangible link between the functions of genomic RNA dimerization and encapsidation, which are known to be related, but whose physical relationship has been unclear. A model is proposed that accounts for observations of dimerization, packaging, and translation of viral RNAs during different phases of the viral replication cycle

    Steering cell migration by alternating blebs and actin-rich protrusions

    Get PDF
    Background High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Results Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Conclusions Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times

    Analysing dependability and performance of a real-world Elastic Search application

    Get PDF
    —Increased complexity in IT, big data, and advanced analytical techniques are some of the trends driving demand for more sophisticated and scalable search technology. Despite Quality of Service (QoS) being a critical success factor in most enterprise software service offerings, it is often not a generic component of the enterprise search software stack. In this paper, we explore enterprise search engine dependability and performance using a real-world company architecture and associated data sourced from an ElasticSearch implementation on Linknovate.com. We propose a Fault Tree model to assess the availability and reliability of the Linknovate.com architecture. The results of the Fault Tree model are fed into a Stochastic Petri Net (SPN) model to analyze how failures and redundancy impact application performance of the use case system. Availability and MTTF were used to evaluate the reliability and throughput was used to evaluate the performance of the target system. The best results for all three metrics were returned in scenarios with high levels of redundancy

    Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak

    Get PDF
    The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease

    Characterization of silicon heterojunctions for solar cells

    Get PDF
    Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision

    Nervous System Regionalization Entails Axial Allocation before Neural Differentiation

    Get PDF
    Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS

    Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basin

    Full text link
    The Devonian Antrim Shale is an organic-rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well-developed network of major, through-going vertical fractures controls reservoir-scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ 13 C values (+34 to −41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ 13 C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ 13 C values (<−32‰) are solely associated with outcrop samples and record methane oxidation during cement precipitation. Fracture-fill calcite with δ 13 C values between −10 and −30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13 C-rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture-fill cements. The δ 18 O values in both formation waters and calcite cements increase with depth in the basin (−12 to −4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture-fill cements from outcrop samples have δ 13 C values between −41 and −15‰ PDB. In contrast, most cement in cores have δ 13 C values between +15 and +34‰ PDB. Radiocarbon and 230 Th dating of fracture-fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75720/1/j.1468-8123.2002.00036.x.pd

    COVID-19 at War: The Joint Forces Operation in Ukraine

    Get PDF
    The ongoing pandemic disaster of coronavirus erupted with the first confirmed cases in Wuhan, China, in December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) novel coronavirus, the disease referred to as coronavirus disease 2019, or COVID-19. The World Health Organization (WHO) confirmed the outbreak and determined it a global pandemic. The current pandemic has infected nearly 300 million people and killed over 3 million. The current COVID-19 pandemic is smashing every public health barrier, guardrail, and safety measure in underdeveloped and the most developed countries alike, with peaks and troughs across time. Greatly impacted are those regions experiencing conflict and war. Morbidity and mortality increase logarithmically for those communities at risk and that lack the ability to promote basic preventative measures. States around the globe struggle to unify responses, make gains on preparedness levels, identify and symptomatically treat positive cases, and labs across the globe frantically rollout various vaccines and effective surveillance and therapeutic mechanisms. The incidence and prevalence of COVID-19 may continue to increase globally as no unified disaster response is manifested and disinformation spreads. During this failure in response, virus variants are erupting at a dizzying pace. Ungoverned spaces where nonstate actors predominate and active war zones may become the next epicenter for COVID-19 fatality rates. As the incidence rates continue to rise, hospitals in North America and Europe exceed surge capacity, and immunity post infection struggles to be adequately described. The global threat in previously high-quality, robust infrastructure health-care systems in the most developed economies are failing the challenge posed by COVID-19; how will less-developed economies and those healthcare infrastructures that are destroyed by war and conflict fare until adequate vaccine penetrance in these communities or adequate treatment are established? Ukraine and other states in the Black Sea Region are under threat and are exposed to armed Russian aggression against territorial sovereignty daily. Ukraine, where Russia has been waging war since 2014, faces this specific dual threat: disaster response to violence and a deadly infectious disease. To best serve biosurveillance, aid in pandemic disaster response, and bolster health security in Europe, across the North Atlantic Treaty Alliance (NATO) and Black Sea regions, increased NATO integration, across Ukraine’s disaster response structures within the Ministries of Health, Defense, and Interior must be reinforced and expanded to mitigate the COVID-19 disaster

    Looking to the future of zebrafish as a model to understand the genetic basis of eye disease

    Get PDF
    In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective
    corecore