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A structural linkage between the dimerization and
encapsidation signals in HIV-2 leader RNA

JEAN-MARC LANCHY, JOHN D. IVANOVITCH, and J. STEPHEN LODMELL
Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA

ABSTRACT

The 5� untranslated leader region of retroviral RNAs contains noncoding information that is essential for viral replication,
including signals for transcriptional transactivation, splicing, primer binding for reverse transcription, dimerization of the
genomic RNA, and encapsidation of the viral RNA into virions. These RNA motifs have considerable structural and functional
overlap. In this study, we investigate the conformational dynamics associated with the use and silencing of a sequence in HIV-2
RNA that is involved in genomic RNA dimerization called stem–loop 1 (SL1) and its relationship with a flanking sequence that
is known to be important for encapsidation of viral RNAs. We demonstrate that a long-distance intramolecular interaction
between nucleotides located upstream of the primer-binding site domain and nucleotides encompassing the Gag translation
start codon functionally silences SL1 as a dimerization element. This silencing can be relieved by mutation or by hybridization
of an oligonucleotide that disrupts the long-distance interaction. Furthermore, we identify a palindrome within the packaging/
encapsidation signal � (just 5� of SL1) that can either serve as an efficient dimerization signal itself, or can mediate SL1 silencing
through base pairing with SL1. These results provide a tangible link between the functions of genomic RNA dimerization and
encapsidation, which are known to be related, but whose physical relationship has been unclear. A model is proposed that
accounts for observations of dimerization, packaging, and translation of viral RNAs during different phases of the viral repli-
cation cycle.

Keywords: HIV-2; dimerization; RNA structure; antisense oligonucleotides

INTRODUCTION

One unusual characteristic of retroviruses is that two copies

of the genome are found in the viral particle. The diploid

genome consists of identical positive-strand RNA molecules

joined by noncovalent bonds. The dimeric nature of the

genomic RNA has been documented by sedimentation

analysis (Cheung et al. 1972) and gel electrophoresis (Fu

and Rein 1993). Furthermore, electron microscopy studies

revealed that a strong intermolecular interaction occurs

near the 5� end in a domain called the Dimer Linkage

Structure (DLS; Bender and Davidson 1976; Kung et al.

1976). Besides the DLS, the 5� end of retroviral genomic

RNA is replete with structural and functional elements

(Berkhout 1996). It also contains most of the RNA pack-

aging signals that allow the genomic RNA to be selectively

recognized and encapsidated in a budding viral particle (for

review, see Jewell and Mansky 2000). Upon budding, ret-

roviral particles undergo a maturation process that leads to,

among other morphological changes, an increase in the sta-

bility of the genomic RNA dimer (Fu et al. 1994; Laughrea

et al. 2001).

Since the observation that RNA fragments encompassing

the 5� end of the retroviral genome were able to dimerize in

vitro in the absence of any viral or cellular protein (Darlix

et al. 1990), precise analyses of the relationships between

RNA structural elements involved in dimerization and

maturation of the DLS have been attempted. In HIV-1, a

short sequence that promotes dimerization was identified

and named the dimerization initiation site (DIS; Laughrea

and Jette 1994; Skripkin et al. 1994) or stem–loop 1 (SL1;

McBride and Panganiban 1996). In vitro, this element

maintains two RNA molecules in a dimeric state, either

through a kissing-loop interaction or an extended duplex

base pairing arrangement (for review, see Greatorex and

Lever 1998).

We and others previously demonstrated that two dimer-

ization elements exist within the leader region of HIV-2

genomic RNA (Dirac et al. 2001; Jossinet et al. 2001, 2002;
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Lanchy and Lodmell 2002). One ele-

ment is homologous to SL1 in HIV-1

leader RNA. The second element in-

volves the 5� end of the tRNA-primer

binding site (PBS), which was shown to

mediate dimerization in the presence of

potassium and magnesium at physi-

ological (37°C) or high (55°C) tempera-

tures (Jossinet et al. 2001; Lanchy and

Lodmell 2002), but the resulting dimers

have properties characteristic of loose

dimers (Laughrea and Jette 1996; Muri-

aux et al. 1996). Loose dimers are func-

tionally defined as those that can be ob-

served on a native gel in Tris-Borate

magnesium (TBM) buffer at 4°C but are

absent when assayed on a semidenatur-

ing gel in Tris-Borate EDTA (TBE)

buffer at 24°C, presumably because the

dimers dissociate under these electropho-

resis conditions (Shubsda et al. 1999).

PBS-mediated dimerization occurs

with a variety of different RNA frag-

ments using several dimerization proto-

cols (Lanchy and Lodmell 2002; Lanchy

et al. 2003). However, the use of SL1 as

an in vitro dimerization element was

observed only for HIV-2 RNA frag-

ments between 444 and 546 nt in length

that were incubated at high temperature

(Dirac et al. 2002; Lanchy et al. 2003).

Contrary to similar HIV-1 RNA frag-

ments, HIV-2 RNAs encompassing the entire untranslated

leader region cannot be made to form SL1-dependent tight

dimers by incubation at high temperature (Dirac et al. 2002;

Lanchy and Lodmell 2002). Tight dimers are defined as

stable dimers that withstand semidenaturing electrophore-

sis in TBE buffer at 24°C. The stable nature of the tight

dimers is thought to be caused by an extended base pairing

arrangement of SL1 (Laughrea and Jette 1994, 1996; Paillart

et al. 1994, 1996; Muriaux et al. 1995, 1996). It has been

proposed that the reason HIV-2 RNA does not form tight

dimers is that SL1 can be sequestered in a more stable

intramolecular interaction (Dirac et al. 2002; Lanchy et al.

2003). This intramolecular interaction is positively regu-

lated by two dimer-interfering elements located upstream

and downstream of the major splice donor site (Dirac et al.

2002; Lanchy et al. 2003). Notably, the downstream element

contains the start codon from the gag gene, the first major

open reading frame in the genome (Fig. 1). Using site-

directed mutagenesis and compensatory mutation analysis,

we demonstrated that base pairing between the two ele-

ments inhibited the capacity of HIV-2 leader RNA to form

SL1-dependent tight dimers (Lanchy et al. 2003).

Based on the above observations that dimerization of

HIV-2 RNA and the use of dimerization motifs are prone to

modulation, in this study we have further analyzed the role

of SL1 and flanking regions of HIV-2 leader RNAs using

complementary oligonucleotides, deletion mutagenesis, ki-

netic analysis, and solution structure probing (Fig. 1). We

found that hybridization of oligonucleotides complemen-

tary to the dimer-interfering elements were capable of trig-

gering a conformational change that restored the ability of

wild-type RNAs to form tight dimers. Surprisingly, an RNA

lacking part of SL1 could be induced to dimerize upon

hybridization of oligonucleotides complementary to the

dimer-interfering elements. Oligonucleotides complemen-

tary to the � packaging signal region inhibited this dimer-

ization. Overall, the kinetic and structural data presented

here suggest that a physiologically relevant conformational

change can be readily induced by oligonucleotide binding,

that a conserved autocomplementary sequence within the

packaging signal is, in fact, a newly described dimerization

motif, and that the use or silencing of tight dimerization is

modulated at least in part by a direct interaction of the �
and SL1 sequences. These observations suggest a mecha-

nism for coordinating the essential events of dimerization,

encapsidation, and translation in vivo.

FIGURE 1. 5� leader region of HIV-2 ROD genomic RNA. (A) The landmark sequences with
known functions are indicated by boxes with the name indicated above. TAR, polyA signal,
PBS, �, SL1, SD, and gag represent the trans-activation region, the poly(A) signal domain, the
primer binding site, the encapsidation signal, the stem–loop 1, the major splice donor site, and
the 5� end of the Gag protein coding region, respectively. (B) RNAs used in this study. The
closed boxes represent the in vivo characterized encapsidation signal � (Griffin et al. 2001) and
the in vitro characterized dimerization element SL1 (in HIV-2; Dirac et al. 2001; Lanchy and
Lodmell 2002). The open boxes represent the cores of the two dimer-interfering elements
previously characterized 189–196 and 543–550 (Lanchy et al. 2003). The name of each RNA
construct is indicated at the right. The short thick lines below some elements represent the
binding sites of antisense DNA oligonucleotides used in this study.

Lanchy et al.
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RESULTS

HIV-2 leader RNA does not form SL1-dependent tight
dimers in vitro

The ability of the 1–444 and 1–561 HIV-2 RNAs to form

tight dimers when incubated at 55°C in high potassium

(300 mM), high magnesium (5 mM) buffer (dimer buffer)

was compared. The 1–444 RNA was shown previously to be

especially prone to forming SL1-mediated tight dimers

upon incubation at high temperatures (Dirac et al. 2001;

Lanchy and Lodmell 2002). The yield of 1–444 RNA tight

dimerization was about 90% whereas the level of 1–561

RNA dimers was about 30% (Fig. 2, cf. lanes 3 and 7). The

1–444 RNA dimerization was inhibited when coincubated

with the antisense oligonucleotide asDIM directed against

nt 397–426 (Fig. 1; Table 1). This oligonucleotide hybridizes

to the 5� stem and loop of SL1 and nucleotides upstream

(Table 1). The low level of 1–561 tight dimer was not af-

fected by the presence of asDIM (Fig. 2, cf. lanes 7 and 8).

These results indicated that the truncated 1–444 HIV-2

leader RNA was able to form very high levels of SL1-de-

pendent tight dimers (Fig. 2B), in contrast to the complete

leader 1–561 RNA, which formed mostly monomers (Fig.

2C). The low level of TBE-resistant dimers in 1–561 RNA

were SL1-independent.

An antisense DNA oligonucleotide directed against
the 3� end of 1–561 RNA induces tight dimerization

Because two elements located upstream and downstream of

SL1 were shown previously to influence the formation of

1–561 RNA tight dimers in vitro (Fig. 2C; Lanchy et al.

2003), we hypothesized that antisense DNA oligonucleo-

tides directed against these interfering elements (as202 and

as548; Fig. 1; Table 1) should promote 1–561 RNA tight

dimerization. We first tested the effect of a 20-fold excess of

as548 oligonucleotide on the level of 1–561 RNA tight

dimer. After denaturation and quench cooling, the oligo-

nucleotide and the 1–561 RNA were coincubated in dimer

buffer at temperatures ranging from 24°C to 60°C and

loaded after a 30-min incubation on a TBE gel run at 28°C

(see Materials and Methods). As positive and negative con-

trols, the 1–444 (Fig. 3A) and 1–561 (Fig. 3C) RNAs, re-

spectively, were incubated without oligonucleotide as de-

scribed above. The level of 1–561 RNA tight dimers was low

at any temperature (Fig. 3C). However, incubation of the

1–561 RNA together with as548 promoted temperature-

dependent dimerization comparable to that of 1–444 RNA

(Fig. 3, cf. A and B). To further characterize the as548-

mediated dimerization, we performed kinetic analysis of

tight dimerization at 55°C for 1–526 RNA and 1–561 RNA

coincubated with or without the as548 oligonucleotide, as-

sayed on a TBE gel at 28°C (Fig. 3D,E). We used 1–526 RNA

in this assay because it represents the truncation construct

that most nearly resembles the 1–561 RNA with as548

bound; oligonucleotide as548 hybridizes to nt 528–548 to

inhibit the long-range interaction, whereas 1–526 RNA

lacks these same nucleotides. To determine the dimeriza-

tion rate constant, the data were fitted using a second-order

reaction model (see Materials and Methods). The dimer-

ization rates of 1–526 RNA and 1–561 RNA were 0.061±

FIGURE 2. TBE-resistant dimerization of 1–444 and 1–561 RNAs.
(A) 1–444 and 1–561 RNAs were assayed for dimerization at 55°C with
monomer (M) or dimer (D) buffer. Dimerization was also assayed in
the presence of a 20-fold excess of antisense DNA oligonucleotide
asDIM, which is complementary to nucleotides 397–426. After incu-
bation for 30 min, samples were subjected to electrophoresis on a TBE
agarose gel at 28°C. Only tight dimers withstand the warm TBE elec-
trophoresis. (Control lanes C) Monomeric RNA that was denatured at
90°C, then quenched on ice immediately prior to loading. (B) Sche-
matic representation of the tight dimer of 1–444 RNA from A, lane 3.
The two molecules interact through an extended base pairing of the
SL1 elements. (C) Schematic representation of the proposed mono-
meric form of 1–561 RNA from A, lane 7. Upon incubation of 1–561
RNA at high temperature, there is an intramolecular folding of SL1
that competes with the intermolecular interaction (i.e., dimerization).
The SL1 structure is shown partially base paired to the upstream
encapsidation signal �, as described in Lanchy et al. (2003).

TABLE 1. Oligonucleotides used in this study

as202 CTAGGAGAGATGGGAGTACACAC

as� CTAGGAGCACTCCGTCGTGGTTTG

asSL1 TGGTACCTCGGCCCGCGCCT

asDIM TGGTACCTCGGCCCGCGCCTTTCTAGGAGC

as548 CATCTCCCACAATCTTCTACC

sBAMT7R TAGGATCCTAATACGACTCACTATAG

GTCGCTCTGCGGAGAG

asECO444 AAGAATTCGCTCCACACGCTGCCTTTG

asECO526 AAGAATTCGTCTAAAGGTAGGATAG

asECO561 AAGAATTCAGTTTCTCGCGCCCATCTCCC

The 5� to 3� sequence is indicated from left to right.

Regulation of HIV-2 RNA dimerization
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0.016 and 0.005± 0.001 µM−1min−1, respectively. The

dimerization rate of 1–561 RNA in the presence of as548

was 0.055± 0.013 µM−1min−1 (results from duplicate ex-

periments). Thus, the binding of the as548 oligonucleotide

was able to suppress the interference of tight dimerization

of 1–561 leader RNA.

Induction of 1–561 tight dimerization by antisense
oligonucleotides as202 and as548 involves the
SL1 region

As was observed with oligonucleotide as548 above, an iden-

tical dimer-inducing effect was obtained with oligonucleo-

tide as202, which is complementary to the upstream inter-

fering element. To determine whether SL1 was involved in

as548 or as202-induced tight dimers, we tested the effect of

adding the oligonucleotide asDIM, which is complementary

to the 5� stem of the extended SL1 structure, as previously

modeled (McCann and Lever 1997). The 1–561 RNA was

incubated for 30 min at 55°C in dimer buffer with or with-

out a 20-fold excess of as202, as548, or both (Fig. 4). Each

of these oligonucleotides promoted tight dimerization of

the RNA (Fig. 4, cf. lanes 2 and 3 and lanes 1 or 4). Coin-

cubation of as202, as548 with asDIM led to an almost com-

plete absence of dimer (Fig. 4, lanes 5,6,9). Thus, the 1–561

RNA tight dimers induced by targeting both interfering

elements used the region complementary to asDIM for

dimerization.

Analysis of dimerization domain usage using
radiolabeled antisense oligonucleotides

To further analyze whether SL1 and flanking sequences

were used in oligonucleotide-induced dimerization, we

monitored the partitioning of a limiting amount of radio-

labeled asDIM oligonucleotide into the monomer and

dimer bands upon induction of 1–561 RNA tight dimeriza-

tion. Oligonucleotides were added to the 1–561 RNA prior

FIGURE 3. Influence of incubation temperature and time on the as548 oligonucleotide-induced dimerization of 1–561 RNA. The 1–444 RNA
(A), 1–561 RNA with the as548 oligonucleotide (B), or 1–561 RNA without oligonucleotide (C) were incubated in dimer buffer for 30 min at the
indicated temperatures and subjected to electrophoresis on TBE agarose gel run at 28°C. In B, the 1–561 RNA was incubated with a 20-fold excess
of the antisense DNA oligonucleotide as548, which is complementary to nt 528–548. The band below the indicated monomer band in A and the
two faint bands between monomer and dimer bands in B probably represent low-abundance conformers of monomer (in A) or dimer (in B)
species. Control lanes C are described in the previous figure. (D) The time-dependent dimerization of 1–561 RNA at 55°C in the presence of the
as548 oligonucleotide was monitored on a TBE agarose gel at 28°C. (Lanes 1–16) Incubation times of 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30 min, respectively. (E) Plots of the kinetic data for 1–526 RNA and 1–561 RNA with or without as548 (represented by closed circles,
open squares, and open diamonds, respectively). [M]t is the concentration of monomer at time t, and [M]0 is the initial concentration of
dimerization-competent monomer.

Lanchy et al.
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to the initial heat denaturation and quench cooling step.

The oligonucleotide–RNA mixtures were then incubated in

dimer buffer at 55°C and samples were analyzed on a TBE

gel. As before, as202 and as548 oligonucleotides were able to

promote dimerization (Fig. 5A, lanes 3,8). There was no

detectable inhibition of dimerization by asDIM because the

amount of oligonucleotide was low compared to the

amount of RNA (Fig. 5A, lanes 4,9). When the gel was

visualized for the asDIM-associated radioactivity, the radio-

activity was found mostly in the monomer band, even when

most of the RNA was shifted to the dimer band by as202 or

as548 induction (Fig. 5B, lanes 2,4,7,9). These results con-

firmed that the dimerization site used in as202- or as548-

induced tight dimers involves all or part of the sequence

complementary to the asDIM oligonucleotide.

An HIV-2 leader RNA lacking SL1 forms tight dimers
in the presence of as548 oligonucleotide and uses the
region upstream of SL1 as dimerization element

We tested the effect of the as548 oligonucleotide on a con-

struct derived from the 1–561 RNA that lacks nt 409–436 in

the SL1 structure. Based on the previous experiments, as548

was not expected to restore dimerization on this construct.

The 1–561�SL1 RNA formed a very low level of tight dimer

upon incubation at 55°C in dimer buffer (Fig. 6A, lane 1).

Surprisingly, incubation in the presence of an excess of

as548 induced a high yield of tight dimers (Fig. 6A, lane 3).

Incubation of the 1–561�SL1 RNA with as548 and asDIM

virtually eliminated tight dimerization (Fig. 6A, lane 4).

Despite the fact that the asDIM-binding site on the

1–561�SL1 RNA was reduced to nt 397–408, this oligo-

nucleotide was clearly still able to bind the RNA. Further-

more, this result showed that the region upstream of SL1

can serve as a dimerization element.

We then tested an antisense oligonucleotide complemen-

tary to the in vivo-defined encapsidation signal, �, just up-
stream of SL1 (Fig. 1B; Griffin et al. 2001) and found that

it was also able to inhibit the as548-induced 1–561�SL1

RNA tight dimer formation (Fig. 6B, cf. lanes 4 and 3). As

a supplementary control, we tested an RNA fragment lack-

ing SL1 and the second dimerization site characterized in

vitro, the 5� end of the primer binding site (1–

561�NAR1�SL1; Jossinet et al. 2001; Lanchy and Lodmell

2002). The result was identical to the one observed with the

1–561�SL1 RNA (Fig. 6, cf. C and B). Thus, this experiment

showed that the � sequence was responsible for promoting

dimerization under these conditions.

Dimerization through the � region is induced by the
binding of an antisense oligonucleotide directed
against SL1 and vice versa

Analysis of the primary sequence of HIV-2 (ROD isolate)

leader RNA revealed the presence of a palindromic se-

quence 5�-GGAGUGCUCC-3� located upstream of SL1 (nt

392–401; Fig. 7A). In previous work, it was proposed that

the lack of use of SL1 as a dimerization element in 1–561

HIV-2 RNA was due to a more favorable intramolecular

interaction of SL1 with an upstream sequence that includes

the nucleotides 392–401 (Lanchy et al. 2003). Therefore, the

next experiment was designed to test whether the � and SL1

sequences possess similar dimer-promoting characteristics.

The 1–561 RNA was coincubated with as� or asSL1 oligo-

nucleotides in dimer buffer at 55°C, and the resulting

dimers were analyzed on a TBE agarose gel (Fig. 7B). Very

surprisingly, the presence of either asSL1 or as� induced a

small but reproducible increase in the level of 1–561 RNA

tight dimers (Fig. 7B, cf. lanes 2 or 3 and lanes 1 or 5).

However, the presence of both oligonucleotides strongly

inhibited dimer formation (Fig. 7B, cf. lane 4 and lanes 1 or 5).

To confirm that induction by as� was mediated by SL1

and that induction by asSL1 was mediated by the � region,

we assayed dimerization in the presence of a small amount

of radioactively labeled oligonucleotide with or without an

excess of the other oligonucleotide. Because the radioac-

tively labeled oligonucleotide was present in a small sub-

stoichiometric amount, there was no detectable induction

or inhibition of dimerization by the labeled oligonucleotide

alone when the gel was visualized with ethidium bromide

(Fig. 7C, lanes 3,6,9). The partitioning of the radioactively

labeled oligonucleotide into monomer and dimer species

was similar to the proportion of monomer and dimer RNA

species (Fig. 7, cf. lanes 3 in C and D and lanes 6 in C and

D). Incubation with a 20-fold molar excess of oligonucleo-

tide (relative to the 1–561 RNA) shifted the radioactivity to

the monomer species, indicating that the dimer induction

by the binding of one oligonucleotide involved the region

FIGURE 4. Antisense oligonucleotide-mediated activation and sup-
pression of 1–561 RNA tight dimerization. 1–561 RNA was incubated
for 30 min at 55°C in dimer buffer with a 20-fold excess of as202,
as548, asDIM, or a combination of these oligonucleotides and sub-
jected to electrophoresis on TBE agarose gel at 28°C. Antisense DNA
oligonucleotides as202 and as548 target the upstream and downstream
dimer-interfering elements, respectively, previously characterized in
our laboratory (Lanchy et al. 2003). asDIM is complementary to nt
397–426 and inhibits SL1-dependent tight dimerization of the 1–444
model RNA (Fig. 2).

Regulation of HIV-2 RNA dimerization
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targeted by the other oligonucleotide (Fig. 7D, cf. lanes 3

and 4 and lanes 6 and 7). These results support the model

of an intramolecular interaction between the � and SL1

region (Fig. 2C), and that the � region could be involved in

dimerization in a way similar to SL1. The in vitro interac-

tions between encapsidation and dimer-

ization elements may reflect a functional

overlap between encapsidation and

dimerization processes observed in vivo

(for review, see Greatorex and Lever

1998).

RNase T1 structure probing of the
�–SL1 domain

To further demonstrate the differential

usage of dimerization elements, we ana-

lyzed the structure of the �–SL1 domain

of the 1–561 RNA incubated with or

without as548 using the RNase T1 (Fig.

8). The RNase T1 enzyme cuts the phos-

phodiester backbone of guanines in

single-stranded regions. The reactivities

of guanines in SL1 suggest it does not

form an extended duplex in the pres-

ence of as548 for several reasons. First,

the G420 and G421 nucleotides in the

loop of SL1 remained accessible when

the RNA was dimeric (i.e., in the pres-

ence of as548; Fig. 8A, lane 2). Second,

reactivities of guanines 413–415 and 435

were not compatible with an extended

duplex structure of SL1 (Fig. 8B). The

lack of reactivity of guanines in the �
palindromic sequence and the persistent

reactivity of guanines in SL1 in the pres-

ence of as548, together with the oligo-

nucleotide binding data (Figs. 6, 7) sug-

gested that the � palindrome was the

main dimerization element in as548-in-

duced tight dimers of 1–561 RNA.

DISCUSSION

In retroviral replication, the essential

processes of genomic RNA dimerization

and encapsidation are thought to be

linked. In this study, we demonstrate

that in HIV-2 RNA, sequences known

separately for their involvement in

dimerization and encapsidation are

functionally linked. In particular, we

show that conformational changes in

the leader region RNA can promote or

silence the use of dimerization motifs. The conformational

changes involve alternative base pairing arrangements af-

fecting the dimerization site SL1, the packaging signal �,
and a long-range base-pairing interaction that includes the

gag start codon with a sequence just downstream of the

FIGURE 5. Partitioning of asDIM oligonucleotide with monomer and dimer species of 1–561
RNA upon dimer induction by as202 or as548 oligonucleotides. 1–561 RNA and oligonucleo-
tides were mixed, heated to 90°C, quench cooled, then incubated at 55°C. Reactions shown in
lanes 2,4,7,9 included a small amount of radioactively labeled asDIM oligonucleotide. Reactions
shown in lanes 4 and 9 additionally contained a 20-fold excess of as202 or as548 oligonucleo-
tides, respectively. The monomer and dimer species were separated on TBE/28°C gel as de-
scribed in the previous figures. (A) The gel was stained with ethidium bromide and visualized
by fluorescence scanning. (B) The same gel was then fixed and dried and the radioactivity
associated with the free and bound oligonucleotide was visualized by phosphorimager analysis.
Lanes 2,7 suggest that a different interacting region than SL1 or � mediated the low level of
residual dimers. The exclusion of asDIM* from the dimer bands in lanes 4,9 suggests that nt
397–426 are required for dimerization. Lane 5 corresponds to free radioactively labeled asDIM
oligonucleotide loaded without RNA.

Lanchy et al.
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polyadenylation signal stem loop, thus potentially providing

a mechanism to coordinate the diverse functions of dimer-

ization, encapsidation, and translation.

An impetus for this study derived from the apparent

functional silence of SL1 in dimerization of HIV-2 RNA

fragments under most conditions, whereas its homolog in

HIV-1 is clearly a principal player in dimerization (Darlix et

al. 1990; Laughrea and Jette 1994; Paillart et al. 1994; Skrip-

kin et al. 1994; Muriaux et al. 1995; Clever et al. 1996;

Haddrick et al. 1996). This led to the discovery that in

HIV-2 another sequence overlapping the PBS can mediate

loose dimerization (Jossinet et al. 2001; Lanchy and Lodmell

2002) and that a specific long-range base-pairing interac-

tion is responsible for silencing SL1 as a dimerization ele-

ment (Lanchy et al. 2003; a somewhat different interaction

was also proposed in Dirac et al. 2002). Significantly, the

same long-range interaction that influences HIV-2 SL1-me-

diated dimerization has been found in HIV-1 (Fig. 9;

Huthoff and Berkhout 2001, 2002; Abbink and Berkhout

2002; Berkhout et al. 2002), and a long-range interaction

between nucleotides in the Matrix region of gag with a

sequence just downstream of the poly(A) signal in HIV-1

was recently described (Paillart et al. 2002), supporting the

idea that the 5� leader region could serve multiple regula-

tory purposes.

In this work, we used antisense DNA oligonucleotides

both to activate and to mask viral RNA sequences involved

in dimerization. This strategy allowed us to assess the role of

the long-range interaction in the silencing of SL1, to moni-

tor which sequences were required for dimerization de-

pending on the conformation of the RNA, and to easily

modulate the conformation of the RNA. Identical kinetic

behavior of oligonucleotide as548-induced dimerization,

compared to dimerization of wild-type RNAs that did not

require an oligonucleotide (e.g. 1–526 RNA), suggested that

the oligonucleotide-induced conformation was similar to

the wild-type dimerization-competent form. The prospect

that other physiological cues could trigger the same or simi-

lar conformational changes in vivo is quite intriguing. A

ribosome bound to the gag initiation codon would disrupt

the long-range interaction described here, and nucleocapsid

protein or the nucleocapsid domain of the Gag polyprotein

is most certainly capable of catalyzing structural rearrange-

ments in this region. The structural and dynamic intricacies

of the dimerization domain are also underscored by the

differential magnesium dependence of spontaneous loose

and oligonucleotide-induced and TBE-resistant tight

dimers. Magnesium dependence is suggestive of tertiary

RNA interactions, whereas lack of Mg2+ dependence is

more characteristic of simpler secondary structures.

One of the more unexpected findings in this study was

the observation that a sequence just upstream of SL1 me-

diated dimerization. This new dimerization site overlaps a

region shown by Lever’s group to be essential for encapsi-

dation in vivo (Griffin et al. 2001). A 10-nt-long palin-

dromic sequence in �, 5�-GGAGUGCUCC-3�, appears to

be responsible for the as548-mediated tight dimerization of

RNAs lacking functional SL1 for two reasons. First, the

antisense oligonucleotides asDIM and as� that bind all or

part of the palindrome were able to prevent as548-mediated

tight dimerization of 1–561�SL1 or 1–561�NAR1�SL1

RNAs. Second, the nucleotide sequence within the palin-

drome, 5�-GAGUGCUC-3� is known to form an unusually

stable duplex in vitro, and is statistically overrepresented in

ribosomal RNA (Gautheret et al. 1995; McDowell et al.

1997; Chen et al. 2000; Deng and Sundaralingam 2000).

Furthermore, the unique conformational features of UG

base pairs are important recognition motifs in RNA–RNA

FIGURE 6. as548-Mediated tight dimerization of 1–561 RNA lacking SL1 and PBS dimerization sites. (A) 1–561 �SL1 RNA was incubated at 55°C
in dimer buffer with a 20-fold excess of as548, asDIM oligonucleotides, or both and subjected to electrophoresis on TBE gel. The 1–561�SL1 RNA
lacks the SL1 structure (deletion of nt 409–436). (B) The experiment described in A was reproduced using as� instead of asDIM. The as�
oligonucleotide is complementary to nt 380–404 (Table 1) and binds to the encapsidation signal �. (C) The experiment described in B was
reproduced with the 1–561�NAR1�SL1 RNA. This construct lacks both SL1 and the 5�-304-GGCGCC-309-3� sequence located at the 5� end of
the primer-binding site shown previously to mediate loose dimerization of 1–561 RNA (Jossinet et al. 2001; Lanchy and Lodmell 2002). Loose
dimers are not expected to withstand the TBE electrophoresis.
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and RNA–protein interactions (for review, see Varani and

McClain 2000). Thus, the palindromic sequence found in

the � domain has properties very suggestive of a dimeriza-

tion element.

The experiments presented here indicate that the �
dimerization signal is functionally activated or masked in

vitro through its interactions with SL1. When this local

interaction occurs, neither sequence is available for dimer-

ization. When the �–SL1 interaction is disrupted, either

sequence can mediate tight dimerization. In turn, �–SL1
base pairing is favored by the long-range interaction be-

tween nucleotides downstream from the polyadenylation

signal (190 region) and at the start codon of gag (550 re-

gion). Although the specific secondary structures corre-

sponding to the silenced or dimerization-competent forms

of the RNA are not yet specified in this model, the RNase

probing data presented here have several important impli-

cations. First, the accessibilites of guanines in SL1 in both

the dimeric and monomeric RNAs argues against an ex-

tended duplex involving SL1 in the dimeric form. On the

other hand, the protection of the � palindrome in the

as548-induced dimer is consistent with its use as a dimer-

ization element, although it is also not reactive in the mo-

nomeric form. Finally, significant changes in guanine reac-

tivity in nucleotides flanking the �–SL1 sequences between

the monomeric and dimeric states suggest that a conforma-

tional change occurs in this region upon dimerization. It

will be interesting to see if and how the dimerization prop-

erties of the � domain in vitro are related to its use as a

dimerization domain in addition to a packaging signal in

vivo.

These findings suggest a model for the role of the HIV-2

� palindromic sequence during encapsidation of the ge-

nomic RNA. In this model, the initiation of gag translation

disrupts the long-range interaction and promotes confor-

mational changes in the �–SL1 domain (and probably oth-

ers sites as well). The � domain could thus become a rec-

ognition site for other factors, the most obvious candidate

being the nucleocapsid domain of the Gag polyprotein.

Similarly, the SL1 or � element could become a dimeriza-

FIGURE 7. Antisense oligonucleotide directed against SL1 induces �-dependent tight dimerization of 1–561 RNA and vice versa. (A) Repre-
sentation of the � –SL1 region and antisense oligonucleotides used in this experiment. The two palindromic sequences involved in dimerization
are boxed. as� and asSL1 antisense oligonucleotides binding sites are represented by thick lines. (B) 1–561 RNA was incubated in dimer buffer
at 55°C without or with a 20-fold molar excess of as�, asSL1, or both oligonucleotides, and subjected to TBE electrophoresis. (C, D) Partitioning
of as� or asSL1 oligonucleotides in monomer or dimer species of 1–561 RNA. The experiment described in B was repeated with one of the
oligonucleotides radioactively labeled and present in a small amount and the other present in a 20-fold molar excess. In C, the gel is visualized
with ethidium bromide and in D, the same dried gel is visualized by phosphorimager analysis to visualize the radioactivity associated with the
labeled oligonucleotide.
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tion site that interacts with another genomic RNA molecule.

Experiments by the Lever group showed that HIV-2 selects

its genomic RNA for encapsidation cotranslationally (Grif-

fin et al. 2001). It was determined that two main elements

mediate this activity: the � domain on the RNA and the

nucleocapsid domain of Gag. A similar relationship be-

tween genomic RNA translation and encapsidation has

been suggested for HIV-1 as well (Liang et al. 2002; Poon et

al. 2002). It is still not clear what structural features in the

encapsidation signal are specifically recognized by nucleo-

capsid protein. The palindromic sequence may form a du-

plex or could form an intramolecular structure with nucleo-

tides located upstream or downstream (Griffin et al. 2001;

Lanchy et al. 2003). Nucleocapsid protein is known to have

a preference for G/U-containing sequences (Berglund et al.

1997; Fisher et al. 1998; Kim et al. 2002). In addition, in

vitro selection studies have shown that RNA ligands selected

for nucleocapsid binding end with a self-complementary

sequence located in a stem–loop structure (Lochrie et al.

1997). These features are similar to pre-

sumed features of the �–SL1 region.

As mentioned above, the long-range

interaction involving the start codon of

gag apparently also exists in HIV-1. It

appears that a palindrome similar to the

one we describe here in � exists in

HIV-1 (Kuiken et al. 2001). It is located

in the 3� stem of the poly(A) signal do-

main (nt 98–106; HIV-1 Lai isolate; Fig.

9). Interestingly, this palindromic se-

quence is thought to be involved in the

regulation of HIV-1 RNA dimerization

in seemingly opposite ways. On one

hand, it may be responsible for HIV-1

SL1 silencing in vitro through a direct

base pairing (Huthoff and Berkhout

2001, 2002; Abbink and Berkhout 2002;

Berkhout et al. 2002). On the other

hand, it may be directly involved in in-

termolecular interactions between two

genomic RNAs as part of the Dimer

Linkage Structure (Hoglund et al. 1997).

Furthermore, the importance of the

poly(A) signal domain in HIV-1 ge-

nomic RNA dimerization is under-

scored by the characterization of two

GU-rich sequences that have recently

been shown to be involved in genomic

RNA dimerization in vivo (Russell et al.

2002). Similarly to the palindromic se-

quence, these two GU-rich sequences

may be involved in the regulation of

HIV-1 RNA dimerization, as they over-

lap with the upstream element involved

in a long-range interaction with the gag

start codon, and they could be part of the structure that

mediates SL1 silencing in vitro (Fig. 9). Thus, RNA dimer-

ization and its regulation may be mediated by homologous

sequences in HIV-1 and HIV-2.

The newly described features of HIV-2 leader region

RNA have experimental and phylogenetic support. HIV-1

and HIV-2 leader RNAs apparently share several functional

features, although the relative positions of the structural/

functional elements and their roles in dimerization may

differ. The next endeavor will be to test the relationships

and coordinated regulation of genomic RNA dimerization,

encapsidation, and translation in vivo during viral replica-

tion.

MATERIALS AND METHODS

Template construction for in vitro transcription

A sense primer containing a BamHI site and the promoter for the

T7 RNA polymerase and an antisense primer containing an EcoRI

FIGURE 8. Structural analysis of the �–SL1 region. (A) 1–561 RNA was probed with RNase
T1 in the presence (lane 2) or absence (lane 3) of as548. The lanes labeled G, U, A, and C are
sequencing lanes. (Lane 1) Control (1–561 RNA primer extended without RNase T1 modifi-
cation); (lane 2) 1–561 RNA activated with oligonucleotide as548 during RNase T1 probing;
(and lane 3) RNase T1 probing of 1–561 RNA without as548 present during modification. The
region labeled � represents the palindromic sequence GGAGUGCUCC present in this region.
The region labeled SL1 represents the palindromic sequence GGUACC present in this region.
(B) A model representing HIV-2 RNA SL1 in an extended duplex conformation. (Open
triangles) Cleavages observed in 1–561 RNA by RNase T1 in the absence of as548. (Solid
circles) RNase T1 cleavages observed in 1–561 RNA with as548 present. An increase in nucleo-
tide reactivity is represented by an increase in the symbol present at that location.
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site (Table 1) were used to amplify the first 444 or 561 nt of HIV-2

genomic RNA sequence, ROD isolate (Guyader et al. 1987). The

HIV-2 ROD DNA template (modified plasmid pROD10) was pro-

vided by the EU Programme EVA/MRC Centralised Facility for

AIDS Reagents, NIBSC, UK (Grant Number QLK2-CT-1999-

00609 and GP828102). The numbering is based on the genomic

RNA sequence. The digested polymerase chain reaction (PCR)

products were cloned in the BamHI and EcoRI sites of the pUC18

plasmid. Mutations in the � or SL1 were introduced by mega-

priming mutagenesis (Ke and Madison 1997). Nucleotides 380–

408 and 409–436 are deleted in the �� and �SL1 fragments,

respectively. A PstI fragment of the megaprimed PCR product

bearing the mutation was then subcloned into a plasmid contain-

ing the AatII to XhoI fragment of the modified pROD10 plasmid

(corresponding to the LTR-gag fragment of the proviral DNA;

Kaye and Lever 1998). Mutated clones containing the first 444 or

561 nt were then subcloned into pUC18 with a promoter for T7

RNA polymerase as described above.

RNA synthesis and purification

The various plasmids were linearized with EcoRI prior to in vitro

transcription. RNAs were synthesized by in vitro transcription of

the EcoRI-digested plasmids with the AmpliScribe T7 transcription

kit (Epicentre). After transcription, the DNA was digested with the

supplied RNase-free DNase, and the RNA was purified by ammo-

nium acetate precipitation followed by size exclusion chromatog-

raphy (Bio-Gel P-4, Bio-Rad).

In vitro dimerization of HIV-2 RNA

Five to 7 pmole of RNA were denatured in 8 µL water for 2 min

at 90°C and quench cooled on ice for 2 min. After the addition of

2 µL monomer buffer (final concentrations: 50 mM Tris-HCl at

pH 7.5 at 37°C, 40 mM KCl, 0.1 mMMgCl2) or dimer buffer (final

concentrations: 50 mM Tris-HCl at pH 7.5 at 37°C, 300 mM KCl,

5 mM MgCl2), dimerization was allowed to proceed for 30 min at

24°C, 37°C, 40°C, 45°C, 50°C, 55°C, or 60°C. For most of the

experiments described here, we used 55°C because the incubation

of the 1–444 RNA at 55°C allows a maximal yield of TBE-resistant

SL1-dependent dimers. The samples were then cooled on ice to

stabilize dimers formed during incubation and loaded on a 0.8%

agarose gel with 2 µL of glycerol loading dye 6× (40% glycerol,

Tris-borate 44 mM at pH 8.3, 0.25% Bromophenol blue). Elec-

trophoresis was carried out for 90 min at a monitored temperature

of 28°C in Tris-borate 44 mM (pH 8.3), EDTA 1 mM (TBE). After

electrophoresis, the ethidium bromide-stained gel was scanned on

a Fluorescent Image Analyzer FLA-3000 (Fujifilm).

Kinetics of tight dimer formation

One hundred picomoles of RNA with or without a 20-fold excess

of as548 oligonucleotide were denatured in 160 µL water for 2 min

at 90°C and quench cooled on ice for 2 min. After the addition of

2 µL dimer buffer under the lid of 20 tubes, 8 µL of denatured

RNA was aliquoted to each tube. The dimerization was then ini-

tiated by a 5-sec spin in a benchtop centrifuge and immediate

loading of the tubes in a heating block at 55°C. Dimerization was

allowed to proceed for 2–30 min. At each time point, a tube

containing 10 µL reaction mixture was removed from the heating

block, mixed with 2 µL of glycerol loading dye 6× and loaded on

a 0.8% agarose TBE gel. Electrophoresis was carried out at 28°C

and 3 V/cm. After electrophoresis, the ethidium bromide-stained

gel was scanned on a Fluorescent Image Analyzer FLA-3000 (Fu-

jifilm). Quantification of the extent of dimerization was done us-

ing Fujifilm Image Gauge V3.3 software. The data were fitted using

a second-order conformation model (Marquet et al. 1994):

1

Mt

=
1

M0

+ 2kdimt

where Mt is the concentration of monomer at time t, M0 is the

initial concentration of dimerization-competent monomer, and

kdim is the second-order rate constant of dimerization (µM−1·min−1).

Antisense oligonucleotides

Five picomoles of RNA with or without 100 pmole of oligonucleo-

tide were denatured in 8 µL water for 2 min at 90°C and quench

cooled on ice for 2 min. After the addition of 2 µL fivefold con-

centrated dimer buffer, dimerization was allowed to proceed for 30

min at 55°C. The samples were then cooled on ice to stabilize

dimers formed during incubation and loaded on a 0.8% TBE

agarose gel. Electrophoresis was carried out for 90 min at 28°C. To

test the monomer/dimer partitioning of the oligonucleotide, 5

pmole of RNA were incubated under dimerization conditions with

a small amount of 32P-labeled oligonucleotide (total of 0.02–0.075

pmole) with or without 100 pmole of another unlabeled oligo-

nucleotide. After electrophoresis, the ethidium bromide-stained

gel was scanned on a Fluorescent Image Analyzer FLA-3000 (Fu-

jifilm). When radioactive oligonucleotides were used, the gel was

fixed after electrophoresis with trichloroacetic acid, then dried.

FIGURE 9. Structural and functional elements involved in encapsi-
dation and dimerization of HIV-1 and HIV-2 genomic RNAs. (A) The
landmark sequences with known functions are indicated by boxes (see
Fig. 1A). (B, C) The encapsidation, dimerization, and regulatory ele-
ments in HIV-2 (Griffin et al. 2001; Dirac et al. 2002; Lanchy et al.
2003) and HIV-1 (McBride and Panganiban 1996; Abbink and Berk-
hout 2002; Berkhout et al. 2002; Clever et al. 2002; Russell et al. 2002)
are indicated by open, closed, and hatched boxes, respectively. The
described short- or long-range interactions between structural ele-
ments are indicated with brackets. The asterisk indicates palindrome
(GAGUGCUU/C) locations in HIV-1 and HIV-2.
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Radioactivity was visualized and quantified with the FLA-3000

instrument using a phosphorimager plate.

Enzymatic RNA probing with RNase T1

In a standard experiment, 5 pmole of 1–561 RNA were dissolved

in 4 µL of water with or without 10 pmole of the antisense oligo-

nucleotide as548 (Table 1), heated for 2 min at 90°C and quench

cooled on ice. The samples were incubated in dimer buffer (final

concentrations: 50 mM sodium cacodylate at pH 7.5, 5 mM

MgCl2, 300 mM KCl) for 15 min or 30 min at 37°C or 55°C,

respectively. The samples were quench cooled on ice, 2 µg of

Escherichia coli tRNAs (Sigma) and 0.11 units of RNase T1 (In-

vitrogen) were added, and the samples incubated for 5 min, at

37°C, phenol:chloroform (pH 6.7) extracted, and ethanol precipi-

tated. The samples were pelleted by centrifugation at 15,000 rpm

for 30 min, ethanol washed, vacuum dried, and resuspended in

RQ1 DNase buffer with 5 units of RQ1 RNase-free DNase (Pro-

mega) and incubated for 60 min at 37°C. The DNase was removed

using EZ Micropure enzyme removers (Millipore) as per the

manufacturer’s directions. The samples were ethanol precipitated,

pelleted, ethanol washed, vacuum dried, resuspended in water, and

the positions of RNA cleavage were detected by primer extension

(Moazed et al. 1986) with avian myeloblastosis reverse transcrip-

tase (Seikagaku America).
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