6 research outputs found

    Statistical and Machine Learning Link Selection Methods for Brain Functional Networks: Review and Comparison

    No full text
    This article belongs to the Section Computational Neuroscience and Neuroinformatics.Network-based representations have introduced a revolution in neuroscience, expanding the understanding of the brain from the activity of individual regions to the interactions between them. This augmented network view comes at the cost of high dimensionality, which hinders both our capacity of deciphering the main mechanisms behind pathologies, and the significance of any statistical and/or machine learning task used in processing this data. A link selection method, allowing to remove irrelevant connections in a given scenario, is an obvious solution that provides improved utilization of these network representations. In this contribution we review a large set of statistical and machine learning link selection methods and evaluate them on real brain functional networks. Results indicate that most methods perform in a qualitatively similar way, with NBS (Network Based Statistics) winning in terms of quantity of retained information, AnovaNet in terms of stability and ExT (Extra Trees) in terms of lower computational cost. While machine learning methods are conceptually more complex than statistical ones, they do not yield a clear advantage. At the same time, the high heterogeneity in the set of links retained by each method suggests that they are offering complementary views to the data. The implications of these results in neuroscience tasks are finally discussed.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 851255). M.Z. acknowledges the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711). This article is based upon work from COST Action CA15120 OpenMultiMed, supported by COST (European Cooperation in Science and Technology). COST is funded by the Horizon 2020 Framework Programme of the European Union.Peer reviewe

    Assessing Identifiability in Airport Delay Propagation Roles Through Deep Learning Classification

    No full text
    Delays in air transport can be seen as the result of two independent contributions, respectively stemming from the local dynamics of each airport and from a global propagation process; yet, assessing the relative importance of these two aspects in the final behaviour of the system is a challenging task. We here propose the use of the score obtained in a classification task, performed over vectors representing the profiles of delays at each airport, as a way of assessing their identifiability. We show how Deep Learning models are able to recognise airports with high precision, thus suggesting that delays are defined more by the characteristics of each airport than by the global network effects. This identifiability is higher for large and highly connected airports, constant through years, but modulated by season and geographical location. We finally discuss some operational implications of this approach.Peer reviewe

    A Fast Transform for Brain Connectivity Difference Evaluation

    Get PDF
    Anatomical and dynamical connectivity are essential to healthy brain function. However, quantifying variations in connectivity across conditions or between patient populations and appraising their functional significance are highly non-trivial tasks. Here we show that link ranking differences induce specific geometries in a convenient auxiliary space that are often easily recognisable at mere eye inspection. Link ranking can also provide fast and reliable criteria for network reconstruction parameters for which no theoretical guideline has been proposed.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 851255). COST is funded by the Horizon 2020 Framework Programme of the European Union. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California.Peer reviewe

    An Early Stage Researcher's Primer on Systems Medicine Terminology

    Get PDF
    Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields.Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references.Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic
    corecore