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Abstract:

Background: Systems Medicine is a novel approach to medicine, i.e. an 
interdisciplinary field that considers the human body as a system, 
composed of multiple parts and of complex relationships at multiple 
levels, and further integrated into an environment. Exploring Systems 
Medicine implies understanding and combining concepts coming from 
diametral different fields, including medicine, biology, statistics, 
modelling and simulation, and data science. Such heterogeneity leads to 
semantic issues, which may slow down implementation and fruitful 
interaction between these highly diverse fields. 

Methods: In this review we collect and explain over one hundred terms 
related to Systems Medicine. These include both modelling and data 
science terms and basic systems medicine terms, along with some 
synthetic definitions, examples of applications, and lists of relevant 
references. 

Results: This glossary aims at being a first aid kit for the Systems 
Medicine researcher facing an unfamiliar term, where he/she can get a 
first understanding of them, and, more importantly, examples and 
references for keep digging into the topic. 
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T. S. wrote part of the manuscript, specifically the term “Quantitative systems 
pharmacology”.

B. S. wrote part of the manuscript, specifically the introduction and terms 
“metaboAnalyst”, “microbiomeAnalyst”, and “Variation partitioning”.

J. S.-C. wrote part of the manuscript, specifically terms “Morphometric similarity 
networks”, “Permutation test”, and “Structural covariance networks”.

V. S. wrote part of the manuscript, specifically the term “Multiscale Biomolecular 
Simulations”.
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G. M. S. wrote part of the manuscript, specifically terms “Computational Drug 
Repurposing” and “Systems bioinformatics”.

E. S. wrote part of the manuscript, specifically terms “Constraints”, “Parameter 
estimation”, “Parameter identifiability”, and “Time scale separation”.

T. S. wrote part of the manuscript, specifically terms “Artificial neural networks”, 
“Biomaterials”, “Cellular automata”, “Dissipative particle dynamics”, “Finite 
Element Method”, “Finite Volume Method”, “In silico modelling”, “Lattice 
Boltzmann method”, “Multiphysics systems”, “Multiscale modelling”, “Precision 
medicine”, “Simulated annealing”, “Smoothed-particle hydrodynamics”, “Solid-
fluid interaction”, and “Surrogate model”.

I. S. wrote part of the manuscript, specifically terms “Biomechanics”, “Biofluid 
mechanics”, and “Bioheat transfer”.

P. T. wrote part of the manuscript, specifically the term “Biological networks”.

S. T. wrote part of the manuscript, specifically the term “Clinical decision 
support systems”.

K. V. S. wrote part of the manuscript, specifically terms “Integrative analysis” 
and “Statistical networks”.

M. V. wrote part of the manuscript, specifically terms “Bayesian filtering”, 
“Bayesian smoothing”, and “Nvidia Clara”.

D.-H. W. wrote part of the manuscript, specifically terms “Quantitative systems 
pharmacology” and “Systems dynamics”.

H. W. wrote part of the manuscript, specifically the term “Clinical decision 
support systems”.
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support systems”.

S. W. wrote part of the manuscript, specifically the term “Quantitative systems 
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K. W.-L. wrote part of the manuscript, specifically terms “Clinical decision 
support systems”, “Quantitative systems pharmacology”, and “Systems 
dynamics”.

S. Y. wrote part of the manuscript, specifically the term “Clinical decision 
support systems”.

X. Z. wrote part of the manuscript, specifically the term “Quantitative systems 
pharmacology”.

H. H. H. W. S. wrote part of the manuscript, specifically the introduction and the 
term “Systems medicine”.
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Abstract:

Background: Systems Medicine is a novel approach to medicine, i.e. an 
interdisciplinary field that considers the human body as a system, composed of 
multiple parts and of complex relationships at multiple levels, and further 
integrated into an environment. Exploring Systems Medicine implies 
understanding and combining concepts coming from diametral different fields, 
including medicine, biology, statistics, modelling and simulation, and data 
science. Such heterogeneity leads to semantic issues, which may slow down 
implementation and fruitful interaction between these highly diverse fields.

Methods: In this review we collect and explain over one hundred terms related to 
Systems Medicine. These include both modelling and data science terms and 
basic systems medicine terms, along with some synthetic definitions, examples 
of applications, and lists of relevant references. 

Results: This glossary aims at being a first aid kit for the Systems Medicine 
researcher facing an unfamiliar term, where he/she can get a first understanding 
of them, and, more importantly, examples and references for keep digging into 
the topic.
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Introduction

While death has always been the end of every man’s life, mankind has been 
trying to delay that as much as possible. It is thus not surprising that one of the 
most ancient forms of science, if not the first, has been medicine, starting with 
documents going back to ancient Egypt and Greece [1]. In the last century, 
technical advances (from vaccines to genome sequencing) have supposed a 
revolution in medicine, and have allowed a substantial reduction in mortality 
rates. Yet, this trend is now experiencing diminishing returns: new drugs are 
nowadays developed less frequently and at a higher cost, they are beneficial to 
smaller subsets of the population, and consequently have less impact in life 
expectancy. In parallel, mankind has recently witnessed an IT revolution, in which 
data are gathered and processed at unprecedented rates, given birth to 
applications that would have appeared as science fiction as recently as twenty 
years ago. Following the theory of Kondratiev waves [2], postulating the existence 
of waves of forty to sixty years with high sectoral growth, could it be that the next 
wave will have medicine at its focus, and specifically through the merging of both 
revolutions?

Such merging is actually taking the form of the so-called Systems Medicine, an 
interdisciplinary field of study that looks at the human body as a system, 
composed of interacting parts, and further integrated into an environment [3, 4]. 
It considers that these complex relationships exist on multiple levels, and that 
they have to be understood in light of a patient’s genomics, behaviour and 
environment. The analysis of a disease then starts with real data, coming from a 
large number of patients (thus to ensure that the natural variability is taken into 
account) and covering all aspect of them, from genetics to the environment. 
Machine learning and mathematical models are then developed, aimed at finding 
the most efficient way of disrupting the disease in a specific patient.

Even after this oversimplified description, it is clear that systems medicine 
requires skills and knowledge not considered in standard medical curricula, or 
alternatively the collaboration between researchers of different backgrounds. The 
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revolutionary idea behind systems medicine is thus responsible for its main 
drawback: the need for understanding and combining concepts coming from 
diametral different fields, including statistics, modelling and simulation, and data 
science [5]. The researcher wanting to enter this world will face an additional 
problem: while a large number of books and papers can be found on, e.g., data 
mining concepts, these are usually not written with a medical practitioner in mind. 
Not just the required background, but even the basic terminology can become a 
major barrier.

This review addresses the semantic issues this implies, which may slow down 
implementation and fruitful interaction between these highly diverse fields, by 
providing the first version of the Systems Medicine Dictionary1. Specifically, the 
practitioner coming from medicine will in it find a large number of modelling and 
data science terms, along with some synthetic (albeit comprehensive) definitions 
and a list of relevant references. Similarly, a researcher with a background in 
modelling and data will here find an explanation of the basic systems medicine 
terms. It is worth noting that these definitions are not exhaustive, as both their 
selection and the corresponding content has been guided by the personal view 
of the authors. Additionally, some terms here described represent fields of 
research on their own, whose characterisation can hardly be contained in a 
monographic book. This work thus represent the first aid kit for the systems 
medicine researchers facing an unfamiliar term. They will here get a first 
understanding of it; and, more importantly, examples and references for keep 
digging into the topic.

Science in general, and medicine in particular, can benefit from approaches 
different from what was done before, as these can have multiplicative effects on 
knowledge and understanding in general; this may lead to new insights and ideas 
for new hypotheses, and eventually to breakthroughs unattainable via the old and 
tested ways of thinking and acting. In turn, this requires crossing discipline 
boundaries and provide new angles to old information. We expect this glossary 

1 We plan this glossary to be updated in the future; we will therefore welcome any suggestion 
coming from readers.
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to be especially useful to the younger readership, e.g. PhD students and early-
career researchers, as they are at a better position to break away from old 
conventionalisms while significantly boosting their careers.

Concepts from Systems Medicine, Modelling and Data Science

All terms are here included in alphabetical order, and are further listed in Table 
1. Table 2 also reports a list of the acronyms that appear in the text, and the 
corresponding meaning. Finally, underlines words, e.g. Agent-based modelling, 
refers to terms that are here defined.

Agent-based modelling Artificial Neural 
Networks

Bayesian filtering

Bayesian networks Bayesian smoothing Bayesian statistics

Biofluid mechanics Bioheat transfer Biological networks

Biomaterials Biomechanics Cellular automata

Clinical decision support 
systems

Clustering Complex networks

Complex systems Computational Drug 
Repurposing

Constraints

Context awareness 
systems

Correlation networks CRISP-DM

Cross-validation Data analysis software Data fusion and data 
integration

Data mining Decision Tree Decision Support 
Systems

Deep Learning Digital Health Digital Twin

Dissipative particle 
dynamics

Erdős–Rényi model Exposome

FAIR principles Feature selection Finite Element Method
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Finite Volume Method Frequentist statistics Functional networks

Gene Set Enrichment 
Analysis

Granger causality Graph embedding

Hidden Conditional 
Random Fields

Imputation In silico modelling

Integrative analysis Interactome Internet of Things

Lattice Boltzmann 
method

Machine Learning Mediation analysis

Medical Informatics metaboAnalyst Metabolomics

Model robustness Model Verification and 
Validation

Morphometric similarity 
networks

Multiphysics systems Multi-layer networks Multiscale Biomolecular 
Simulations

Multiscale modelling Network Analysis 
Software

networkAnalyst

Network medicine Null models Nvidia Clara

Object oriented 
modelling

Ontologies Parameter estimation

Parameter identifiability Parameter Sensitivity 
Analysis and Uncertainty 
Quantification

Permutation test

Phase transition Physiome Precision medicine

Probabilistic Risk 
Analysis

Quantitative systems 
pharmacology

Random Forest

Random graphs Scale-free networks Simulated annealing

Small-world network Smoothed-particle 
hydrodynamics

Solid-fluid interaction

Statistical bioinformatics Statistical Networks Support Vector Machine

Surrogate model Systems biology Systems bioinformatics

Systems dynamics Systems Engineering Systems medicine

System of Systems Standards Structural covariance 
networks
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Time-evolving networks Time scale separation Variation partitioning

Virtual physiological 
human

Table 1. List of the terms here described.

2SSP Two-Stage Stochastic Programming

AAL Ambient Assisted Living

ABM Agent-based modelling

AI Artificial Intelligence

ANN Artificial neural networks

BI Business Intelligence

BIC Bayes Information Criteria

BPPV Benign paroxysmal positional vertigo

CA Cellular automata

CDSS Clinical decision support system

CFD Computational Fluid Dynamics

DDA Drug-disease association

DDI Drug–drug interaction

DPD Dissipative particle dynamics

DSS Decision Support System

DT Decision Tree

EEG Electro-encephalography

FBA Flux balance analysis

FEA Finite element analysis

FEM Finite element method

fMRI Functional magnetic resonance imaging

FVM Finite Volume Method

GCN Gene co-expression network

GRN Gene regulatory network

GSEA Gene Set Enrichment Analysis

HCRF Hidden Conditional Random Fields
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HMS Healthcare Monitoring System

HSH Health Smart Homes

ICT Information and communication technologies

IoMT Internet of Medical Things

IoT Internet of Things

IT Information Technology

LB Lattice Boltzmann

LDL Low density lipoprotein

MEG Magneto-encephalography

MFA Metabolic flux analysis

MICE Multiple Imputation by Chained Equations

MMS Multiscale Modelling and Simulation

MSC Multiscale Computing 

NLP Natural Language Processing

PaaS Platform as a Service

PCA Principal-component analysis

PIN protein interaction network 

PK/PD Pharmacokinetic/pharmacodynamic

PPI Protein-protein interaction

PRA Probabilistic risk analysis 

QM/MM Quantum mechanical and molecular mechanical

QSP Quantitative systems pharmacology

RF Random Forest

RFE Recursive Feature Elimination

RSM Response surface models

SA Simulated annealing

SDK Software Development Kit

SPH Smoothed-particle hydrodynamics

TF Transcription factor

t-SNE t-distributed stochastic neighbour embedding

UPR Unfolded protein response
Table 2. List and explanation of the acronyms used throughout the review.
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Agent-based modelling. Agent-based modelling (ABM) (also known as Individual 
based modelling, Multi-agent Systems and Multi-agent autonomous Systems) is 
a modelling/simulation paradigm especially suited for studying complex systems, 
i.e. systems composed of a large number of heterogeneous interacting entities, 
each having many degrees of freedom. A very open definition of this 
mathematical discrete modelling paradigm is to represent a physical or biological 
system on the basis of entities (called agents) with defined properties and 
behavioural rules, and then to simulate them in a computer to reproduce the real 
phenomena and to perform what-if analysis [6]. Agents have thus to be 
understood as autonomous entities, each one with an internal state representing 
its knowledge about the environment, and rules (or algorithms) to interact with 
other agents. This broad definition can then encompass from simple particles to 
autonomous software with learning capabilities. To illustrate, these can be from 
“helper” agents for web retrieval [7, 8], robotic agents to explore inhospitable 
environments [9], up to lymphocytes in an immune system reaction simulation 
[10, 11, 12]. Roughly speaking, an entity is an “agent” if it is distinguishable from 
its environment by some kind of spatial, temporal, or functional attribute: an agent 
must be identifiable. Additionally, agents can be identified on the basis of four 
basic properties: autonomy, i.e. the behaviour of each agent is not guided by 
rules defined at a higher tier; social ability, that is, their capacity of interacting with 
other agents; reactivity, in that they react to perceived changes in the 
environment; and pro-activeness, i.e. the ability to take the initiative. Moreover, it 
is also conceptually important to define what the agent “environment” in an ABM 
is. This can be implicitly embedded in the behavioural rules or be explicitly 
represented as a different “modelled object” with a well-defined set of 
characteristics which influence the agent’s behaviour.

An ABM simulation may start from simple agents, locally interacting with simple 
rules of behaviour, responding to perceived environmental cues and trying to 
achieve a local goal. Yet, the simplicity of the composing elements does not 
derive in the simplicity of the overall dynamics. From this simple configuration, a 
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synergy may emerge, which leads to a higher-level whole with much more 
intricate behaviour than the component agents (holism, meaning all, entire, total). 

If the first examples of agent-based models were developed in the late 1940s, 
only computers could really show their modelling power. These include the Von 
Neumann machine, a theoretical machine capable of reproduction [13], i.e. of 
producing an identical copy of itself by following a set of instructions. This idea 
was then improved by Stanislaw Ulam [14], by suggesting machines to be built 
on paper, as collections of cells on a grid. This idea inspired von Neumann to 
create the first of the models later termed cellular automata (CA). Building on top 
of these, John Conway constructed the well-known “Game of Life”, a simple set 
of rules that allow evolving a virtual world in the form of a two-dimensional 
checkerboard, and which has become a paradigmatic example of the emergence 
of order in nature. How do systems self-organize themselves and spontaneously 
achieve a higher-ordered state? These and other questions have been deeply 
addressed in the first workshop on Artificial Life (ALife) held in the late 1980s in 
Santa Fe. This workshop shaped the ALife field of research [15], in which ABM 
models are the main form of modelling and simulation. 

ABM proved very successful in theoretical biology. In this specific research 
domain, ABM is emerging as the best modelling paradigm able to accommodate 
the need to represent more than one level of space-time description thus fitting 
the multi-scale specification. Beyond the aforementioned works on the immune 
system, examples include cancer modelling [16, 17], or epidemics predictions 
[18, 19]. For further discussions and examples, the reader may refer to [20].

Artificial Neural Networks. Artificial neural networks (ANN) are inspired by the 
neural networks that exist in mammal brains [21]. They represent a programming 
paradigm that helps a computer to process complex information in order to learn 
from the observational data. The network itself consists of connected units or 
nodes called artificial neurons (based on neurons in a biological brain) that are 
organised in layers. The first layer is called the input layer and is connected to 
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the input signals. The input layer is followed by one or more hidden layers, all the 
way to the output layer connected to the output signals. Analogous to the 
synapses in a biological brain, signals are transmitted from one neuron to 
another. The output of one artificial neuron is computed when a non-linear 
function is applied on the sum of its inputs. Usually, the weights and biases are 
added to adjust the learning process. Weights increase or decrease the strength 
of the signal at a connection, and biases represent the threshold to delay the 
triggering of the activation function. Mathematically, this can be represented as:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠).

Figure 1. Graphical representation of Artificial neural network (ANN).

In order for ANN to learn from the provided data, they need to have a huge 
amount of information used as a training set. During the training period, the ANN’s 
output is compared to the human-provided description of what should be 
observed (called target). If they are the same, weights are validated, and in case 
of incorrect classification, its learning will be adjusted [22]. In the end, an unknown 
signal (not used in the training set) will be used as the input, and we expect the 
network to correctly predict the output (this process is called generalisation). As 
an example, in the process of classification of images as images with a dog or 
cat, the training set would be thousands of images already classified as dog or 
cat image. After the training, the ANN should be able to classify future images 
based on the trained model. 
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Although ANNs were originally aimed at solving specific biology problems, over 
time their application extended to a wide spectrum of tasks, including systems 
medicine through genomics, drug repurposing, or personalized medicine. Not 
surprisingly, many reviews are available. For instance, Awwalu et al. investigated 
the adequacy of using ANN, among other artificial intelligence algorithms, in 
solving personalized medicine and precision medicine problems [23]. Ching et al. 
have developed ANN framework called Cox-nnet to predict patient prognosis 
from high throughput transcriptomics data [24]. Bica et al. have introduced a 
novel neural network architecture for exploring and integrating modalities in 
omics datasets, especially in cases where a limited number of training examples 
was available [25]. Also, some examples of application of deep neural networks 
could be found in using neural networks to learn an embedding that substantially 
denoises expression data, making replicates of the same compound more similar 
[26]. Donner et al. used ANNs to identify drugs with shared therapeutic and 
biological targets, even for compounds with structural dissimilarity, revealing 
functional relationships between compounds and making a step forward towards 
the drug repurposing based on expression data [26].

Bayesian filtering. A class of methods that allows estimating the current state, i.e. 
the value of the observed variable(s), based on noisy measurements of the 
current and previous states. For instance, the spread of infectious diseases could 
be modelled with the help of Bayesian filters, where the time-varying variables 
are e.g. estimations of the number of susceptible, infected, healed, and dead 
individuals taken in the current and some previous time moments [27]. For more 
information, see [28].

Bayesian networks. Bayesian networks (also known as Bayes networks, belief 
networks, Bayes/Bayesian models and probabilistic directed acyclic graphical 
models) are a type of directed graphical model (i.e. a graph expressing the 
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conditional dependencies between variables) that combine graph theory and 
probability theory (see also Bayesian statistics). They present a formalism 
designed to address problems involving uncertainty and complexity. The 
Bayesian network approach can be seen as both a statistical as well as an AI-
like knowledge-representation formalism. It is a useful tool for describing 
mechanisms involving stochasticity, cohort heterogeneity and knowledge gaps, 
which are common features of medical problems, and has been utilised for 
diagnosis, treatment selection, and prognosis [29] as well as for analysing 
probabilistic cause-effect relationships (i.e. estimating the likelihood of a set of 
factors to be contributing to an observation, for example the relationship between 
symptoms and potential underlying mechanisms). Bayesian networks are 
constructed as directed acyclic graphs, where nodes represent unique variables 
that have a finite set of mutually exclusive states, whereas edges represent 
conditional dependence and the absence of edges conditional independence 
[30]. For each variable  with parents , there is a conditional probability 𝐴 𝐵1,𝐵2,…,𝐵𝑛
table  given as  [30]. Importantly, Bayesian networks satisfy the 𝑃 𝑃(𝐴|𝐵1,𝐵2,…,𝐵𝑛)
local Markov property, meaning that nodes are conditionally independent of its 
non-descendants given its respective parents. This characteristic permits a 
simplification of joint distributions within the model, allowing for efficient 
computation. In the most simple approach a Bayesian network is specified using 
expert knowledge, in the case of complex interactions the network structure and 
parameters need to be learned from data.

Inference and learning in Bayesian networks. Given probability tables of the 
variables in a Bayesian network and conditional independencies, joint probability 
distributions can be calculated and utilised to infer information within the network 
and for structural learning. This approach can be used for different probabilistic 
inference methods, e.g. for estimating the distribution of subsets of unobserved 
variables given observed variables (so-called evidence variables). Furthermore, 
Bayesian networks can be utilised to express causal relationships and combine 
domain knowledge with data, and, importantly, can thus be used for probabilistic 
parameter estimation. 
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Examples of the use of Bayesian networks in medicine include the diagnosis and 
prediction of disease trajectory [31, 32, 33], healthcare planning [34, 35], and 
molecular data analysis [36]. While this is a popular and successful option for 
modelling in the medical domain, they should be used with caution in complex 
problems with multiple feedback loos and closed-loop conditions.

Most relevant limitations. Bayesian networks commonly rely on prior 
knowledge/belief for construction and inference, thus the quality and usefulness 
of a respective network is directly dependent on the usefulness and reliability of 
this prior knowledge. In the case of expert-constructed networks it may 
furthermore be challenging to translate this knowledge into probability 
distributions. Bayesian networks are constructed as acyclic graphs and thus do 
not support the implementation of feedback-loops [37], although this may be 
addressed using dynamic Bayesian networks [38]. Bayesian networks have 
limited ability to deal with continuous variables, a limitation most commonly 
addressed by discretizing these variables, which in turn has tradeoffs [39]. Lastly, 
Bayesian learning and inference can become very computationally expensive, to 
the point that a network becomes impossible to compute and the search space 
needs to be reduced using different heuristics (for example, see [40, 41]).

Bayesian smoothing. A class of methods for reconstructing previous state(s), 
having noisy measurements of the current and the previous states. Brain imaging 
is an example of an area that can take advantage of the Bayesian filters and 
smoothers relying on sensor measurements of different values. For examples, 
see [28].
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Bayesian statistics. Bayesian statistics is a Bayesian interpretation of probability 
in which probability expresses a degree of belief in an event, as opposed to a 
fixed value based upon frequency - see frequentist statistics.

The basic framework of Bayesian analysis is quite straightforward. Prior 
distributions are associated with parameters of interest to represent our initial 
beliefs about them, e.g. based on objective evidence, subjective judgment, or a 
combination of both. Evidence provided by further data is summarized by a 
likelihood function, and the normalized product of prior and the likelihood forms a 
posterior distribution. This posterior distribution contains all the currently available 
information about the model parameters. Note that this is different from the 
standard frequentist approach, and that both methods do not always give the 
same answers; and this is fuelling an ongoing debate between proponents of both 
approaches [42, 43, 44]. At the same time, the use of a Bayesian approach yields 
results that go beyond what obtainable through a frequentist perspective [45, 46, 
47]. In what follows, the most important points of Bayesian and frequentists 
disagreements and differences are discussed: prior distributions, sequential 
analysis and confidence intervals.

The (subjective) choice of prior distribution. The specification of prior distribution 
is a matter of ongoing concern for those contemplating the use of Bayesian 
methods in medical research [48]. It is not without a reason that frequentists 
object to this concept. Any conclusions drawn from the posterior distribution will 
be impacted by this choice. If the prior distribution is informative, i.e. already 
carries strong evidence for certain values of unknown parameters, then new data 
might have no significant impact at all (which is not a bad thing if our prior 
distribution reflects the truth). Many authors devoted their thoughts to the 
formalization of the prior distribution selection. [49, 50, 51, 52] have all made 
suggestions regarding the elicitation and quantification of prior opinions of 
clinicians. However, it is still a very difficult task. Even minor mistakes in the prior 
elicitation can propagate to significant errors in the posterior inferences. The 
subjectivity in the elicitation of expert opinions is the main critique of Bayesian 
approach. Actually, in very complex problems such elicitation might even be 
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impossible to many parameters. However, uninformative priors, the kind that also 
have a claim to objectivity, are the Bayesian response [53]. In fact, there is a 
strong movement toward objective uninformative priors in Bayesian community.

This struggle to develop the objective Bayesian framework produced quite many 
different approaches on how to devise objective prior distribution. The most 
famous of these is the Jeffreys-rule prior [54]. Reference priors [55, 56] are a 
refinement of the Jeffreys-rule priors for higher dimensional problems and have 
proven to be remarkably successful from both Bayesian and non-Bayesian 
perspectives. Maximum entropy priors [57] are another well-known type of 
noninformative prior, although they often also reflect certain informative features 
of the system being analysed. Invariance priors, as mentioned above, matching 
priors [58] and admissible priors [59] are other approaches being extensively 
studied today. Methods on how to select a prior distribution from this vast 
universe of possible distributions are discussed in [60]. Caution is advised when 
considering a noninformative distribution. Sensitivity analysis should always be 
performed, because in small sample cases, noninformative prior distribution can 
still influence the posterior results [61]. On the other hand, arbitrariness is not so 
unfamiliar to frequentists practices as well.
 
Sequential analysis. The Bayesian approach includes a generally accepted 
stopping rule principle: once the data have been observed, the reasons for 
stopping the experiment should have no effect on the evidence reported about 
unknown model parameters. Frequentists practice, on the other hand, is different. 
If there are to be interim analysis during the clinical trial, with the option for 
stopping the trial early should the data look convincing, frequentists feel that it is 
mandatory to adjust allowed error probability (down) to account for the multiple 
analysis [42].

Stopping rules are especially important in clinical trials, and Bayesians pick up 
on this theme as early as 1992, with four seminal papers on colorectal cancer 
clinical trials [62, 63, 64, 65, 66]. Currently, Bayesian stopping rules are being 
used in all phases of trials - see [46] for a complete review. In fact, the increasing 
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use of Bayesian statistical methods in clinical research is supported by their 
capacity to adapt to information that is gathered during a trial, potentially allowing 
for smaller, but yet more informative trials, and for patients to receive better 
treatment [67].
 
Confidence intervals. The concept of confidence intervals is purely frequentists. 
However, the way it is (wrongly) interpreted is Bayesian. Confidence interval 
represents the precision of a parameter estimate as the size of an interval of 
values that necessarily include estimate itself. A true understanding of the 
concept would look like this: if new data were to be repeatedly sampled, the same 
analysis carried out and a series of 95% confidence intervals calculated, 19 out 
of 20 of such intervals would, in the long run, include the true value of the quantity 
being estimated [68]. However, many researchers (mistakenly and fundamentally 
incorrect) interpret this interval as a 0.95 probability that the true parameter is in 
the interval. If one would be truly Bayesian from the beginning of the analysis, 
Bayesian credible intervals [69] would be considered as exactly the probability 
that the unknown parameter is contained in it. In fact, in certain prior distribution 
cases, Bayesian credible intervals are exactly the confidence intervals, only the 
interpretation is different.
 
The interplay of Bayesian and Frequentist analysis. Currently, there is a trend of 
using notions from one type of approach to support analysis of another approach. 
Of many topics, several should be mentioned in this brief note: empirical 
Bayesian analysis, where prior distribution is estimated from the data [70]; 
approximate model selection methods, like BIC (Bayes Information Criteria [71]), 
similar to the usage of Akaike Information criteria; robust Bayesian analysis [72] 
which recognize the impossibility of complete subjective specification of the 
model and prior distribution, etc. From the frequentist theory viewpoint, the most 
convincing argument in favour of the Bayesian approach is that it intersects 
widely with the three notions of classical optimality, namely, minimaxity, 
admissibility and equivariance [73].
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Biofluid mechanics. Biofluid mechanics is the application of principles of fluid 
mechanics on the dynamics of motion of biofluids inside and around of living 
organisms and cells [74]. The main applications of biofluid dynamics are the study 
of the circulatory system with the blood-flow inside vessels of various sizes, the 
study of the respiratory system with the air-flow inside the lungs, but also the 
lubrication of synovial joints [75]. The study of biofluid dynamics has allowed 
many therapeutic applications as artificial heart valves [76], stents and in the 
future artificial lungs [77]. Biofluid dynamics can be studied with simulations and 
experiments. Computational Fluid Dynamics (CFD) simulations can be used to 
better understand the flow phenomena of the biofluids inside the complex 
geometry of vessels. Biofluid dynamics can also be studied with in vivo 
experiments, with the use of non-invasive medical imaging methods as doppler 
ultrasound and magnetic resonance imaging, invasive methods as angiography 
but also with more straightforward methods as the pressure cuff used to measure 
blood pressure [78].

Bioheat transfer. Bioheat transfer concerns the rate of heat transfer between a 
biological system and its environment.  Main difference concerning heat transfer 
of biological systems to non-biological ones is the blood perfusion through the 
extended network of vasculature in biological systems that directly affects the 
local temperature of the living tissue [79]. Main research subjects of bioheat 
transfer are the thermal interaction between the vasculature and tissue, tissue 
thermal parameter estimation [80], human thermal comfort, thermoregulation, 
safety of heat transfer to living tissue due to microwave, ultrasound or laser 
exposure due to environmental exposure or for therapeutic applications [81]. 
Because biochemical processes are governed by local temperature, bioheat 
transfer also plays a major role in the rate of these processes.
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Biological networks. The concept of complex networks represents a powerful tool 
for the representation and the analysis of complex systems, and especially to 
describe their internal interaction structure. Recently, the so-called network 
biology approach [82] has been fruitfully applied in many different biological 
areas, from gene regulation, to protein-protein interactions, to neural signals [83], 
to finally hit clinical applications: network medicine is today at the forefront of 
modern quantitative approaches in medical sciences [84]. Here, with no claim of 
exhaustiveness, we list the main types of biological networks.

Protein-protein interaction networks. Protein-protein interactions (PPIs) are 
physical contacts, stable or transitory, between two or more proteins created by 
electrostatic forces between the so-called protein surfaces, i.e. the “exposed” 
regions of the three-dimensional structures of folded proteins. These contacts are 
at the base of most biological functions, as for instance of signal transduction, 
cell metabolism, membrane transport, or muscle contraction. It is thus clear that 
the analysis of how proteins interact between them is essential to understand 
cellular processes in healthy and in pathological conditions. Sets of proteins and 
their interactions are generally referred to as protein interaction networks (PINs), 
mathematically represented by undirected graphs. The specific analyses 
performed on PINs depends on the overall goal of the study; to illustrate, one 
may try to identify the most prominent element for a given function (e.g. gene 
target prioritization) [85], or the set of lethal proteins in a cell [86]. Methods for the 
detection of protein interaction encompass experimental (e.g. yeast-two-hybrids, 
mass spectrometry) or in silico (ortholog-based) approaches [87, 88]. 

Gene Regulatory Networks. Gene regulatory networks (GRNs) are networks of 
causative and regulative interactions (biochemical processes such as reactions, 
transformations, interactions, activations, inhibitions: the links) between 
transcription factors and downstream genes (the nodes), represented with 
directed graphs and inferred by gene expression data.
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Methods to extrapolate GRNs are based on information-theoretic criteria, co-
expression metrics, or regression approaches, among others. For example, the 
mutual information (MI) approach is often used, i.e. a dimensionless metric that 
states how much the knowledge of a random variable tells about another one. A 
value of MI of zero indicates that the two variables are completely independent; 
on the other hand, MI > 0 implies that they are connected, as knowing one of 
them is equivalent to (partially) knowing the other. Thus, if MI > 0 for the 
expression of two genes, we can infer that one of them is (partially, at least) 
driving the other [89].

While created in an indirect way, inferred GRNs aim at representing real physical, 
directed, and quantitatively determined interaction events, both between genes 
and, and between them and their products. The final aim is the discovery of key 
functional relationships between RNA expression and chemotherapeutic 
susceptibility [90]. Recently, data from single-cell gene expression have become 
mature and have been approached using partial information decomposition to 
detect putative functional associations and to formulate systematic hypotheses 
[91, 92].

Validation of GRNs has traditionally been performed in two ways. On the one 
hand, one can resort to “gold standards”, i.e. sets of interactions that have been 
validated; on the other hand, one can observe the biological system under study 
in vitro, by inducing a perturbation and by observing whether the real and 
predicted effects coincide [93, 94].

Gene Co-Expression Networks. Gene co-expression networks (GCNs) are 
basically RNA transcript–RNA transcript association networks: nodes of the 
network correspond to genes, which are pairwise connected when an appreciable 
transcript co-expression association between them exists. Networks are then 
calculated by estimating some kind of similarity score from expression data and 
by applying a significance threshold; the result is usually a undirected graph. In 
reconstructing GCNs, normalization methods, co-expression correlation (e.g. 
Pearson’s or Spearman’s correlation measures), significance and relevance 
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estimation are calculated. Graphical Gaussian Models (e.g. “concentration graph” 
or “covariance selection” models) are also used, along with edge removal based 
on gene triplets analysis (e.g., the ARACNE tool), regression methods and 
Bayesian networks [95].

Signalling Networks. Signalling pathways are cascades of molecular/chemical 
interactions and modifications to carry signals from cell membrane receptors to 
the nucleus to arrange proper biological responses to stimuli, on human or 
microbial levels. The process of reconstructing signalling networks has typically 
been based on gene knockout techniques, which are effective in describing 
cascades in a linear or branched manner. Nevertheless, recent screens suggest 
a switch from such cascades to networks with complex interdependencies and 
feedbacks [96], which require methods able to infer aspects and features of 
signalling processes from high-throughput -omic data in a faster and systemic 
way. In general, such inference problem can be reduced to the definition of 
suitable optimal connected subgraphs of a network originally defined by the 
available data; examples include the Steiner tree approaches (based on the 
shortest total lengths of paths of interacting proteins), linear programming, and 
maximum-likelihood (e.g. tagging proteins as activators or repressors to explain 
the maximum number of observed gene knockout). Alternatives include the use 
of probabilistic network, e.g. network flow optimization (Bayesian weighting 
schemes for underlying protein-protein interaction networks coupled with other -
omics data), network propagation (gene prioritization function that scores the 
strength-of-association of proteins with a given disease), or information flow 
analysis (based on the identification of proteins dominant in the communication 
of biological information across the network) [97, 98].

Metabolic Networks. Metabolic network reconstruction is generally referred to as 
the annotation process of genes and metabolites for the determination of the 
metabolic network’s elements, relationships, structure and dynamics [83]. It can 
be identified on human, microbial and their joint co-metabolic levels. It is usually 
possible to infer the enzymatic function of individual proteins, or to reconstruct 
larger (or even whole) metabolic networks. Techniques such as metabolic flux 
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analysis (MFA) and its improvements (for example, isotopically nonstationary 
metabolic flux analysis), and flux balance analysis (FBA) have become largely 
utilized for the predictions of concurrent fluxes of multiple reactions. Recently, 
computational approaches coupling metabolic flux analysis with mass 
spectrometry have been also implemented. Single enzyme function prediction 
can be carried out by resorting to machine learning, especially when the enzyme 
does not show significant similarity to existing proteins; or to “annotation transfer” 
approaches, based on the use of  reference databases or orthologs to tag specific 
DNA sequences. Comparative pathway prediction methods use established 
functional annotations to check for the existence of new reactions, while 
explorative pathway prediction techniques (not using existing annotations), can 
be graph-theoretic (e.g., by weighting paths of metabolite connectivity) or 
constraint-based (e.g., elementary mode analysis), or both [99, 100].

Transcription factor networks. When talking about disease and transformation 
from health to disease, we cannot avoid the transcription factor (TF) networks 
that were enabled by technological advances, such as genome-wide large-scale 
analyses, genome editing, single-cell analyses, live-cell imaging, etc. Enhancer 
locations and target genes are keys to TF network models [101]. The original 
definition of enhancers is that they represent functional DNA sequences that can  
activate (enhance) the rate of transcription from a heterologous promoter, 
independent of their location and orientation [102]. Determining the function of 
enhancers and whether TFs bind to them was accelerated by the CRISPR/Cas9 
and other genome editing  technologies, as well as by the data collected within 
the large-scale efforts, such as the Human Epigenome, ENCODE, etc. If we 
combine the experimental evidence of  TFs binding to specific promoter or 
enhancer DNA elements, at specific genomic loci, we can  construct TF network 
models and maps, to predict biological behaviour in silico and further guide 
experimental research. In principle, the TF network models are simple, consisting 
of sub-networks with nodes (genes and proteins) and edges that link the TFs to 
their  functional targets. More complex models can nevertheless be used, for 
instance integrating Boolean and Bayesian  approaches – see [101] for a review. 
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Transcription factors work predominantly in a tissue specific manner to define the 
cell phenotypes. For a maximal output, different TFs usually cooperate and 
synergise, to modulate changes in gene expression [103]. A TF network map is 
a graph where we can see  which TFs directly regulate a gene by binding to one 
of its promoter or enhancer elements. A TF network map includes  the basic 
biochemical knowledge, similarly as the metabolic network map. It links the TFs 
with  target genes, taking into account the proper physiological or 
patophysiological conditions and signals (endogenous and external), as well as 
the context of the time (development, aging, circadian, etc.). Several approaches 
have been developed to model and/or graphically represent the TF networks, 
such as the PetriNets [104] and the ARACNE algorithm that has been recently 
upgraded to suit also the single-cell gene expression data [105]. The NetProphet 
2.0 [106] is another algorithm for TF network mapping that can as accurately as 
possible identify  TF targets. Another representation of TF networks are the maps 
that are built directly from transcriptome data by applying the enrichment 
procedures. These maps show if the expression of individual TFs is related. For 
example, the KEGG pathways [107] and TRANSFAC database were used for 
functional enrichment studies [108].  Gene sets containing over five elements 
were constructed and tested for enrichment using the PGSEA package and the 
TFs were merged based on their ID irrespective of their binding sites.  In this 
manner the TF enrichment analyses confirmed an increased unfolded protein 
response (UPR) and metabolic decline after depleting one of the genes from 
cholesterol synthesis in the liver [109].

Biomaterials. Biomaterial is a synthetic material that is used to replace part of a 
living system or to function in intimate contact with living tissue [110, 111]. 
Although there are different definitions of a biomaterial, the Clemson University 
Advisory Board for Biomaterials has officially defined a biomaterial as “a 
systemically and pharmacologically inert substance designed for implantation 
within or incorporation with living systems”. One must differ biomaterial from 
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biological material (i.e. bone matrix or tooth enamel), which is produced by a 
biological system. Other materials that should be differentiated are artificial 
materials that are simply in contact with the skin (i.e. hearing aids and wearable 
artificial limbs), which are not biomaterials since the skin acts as a barrier with 
the external world. The main applications of biomaterials include assistance in 
healing, to improve function and correct abnormalities or replacement of a body 
part that has lost function due to disease or trauma. Advances in many fields, 
including surgery, have permitted materials to be used in many cases and wider 
scope [112, 113].

Biomechanics. Biomechanics is the application of classical mechanics to the 
study of biological systems. Laws of physics for statics, kinematics, dynamics, 
continuum mechanics and tribology are applied for the study of biological 
systems from a single cell to whole human bodies [114]. Biomechanics studies 
are employing both experiments and numerical simulations. Experiments in 
biomechanics are performed in vitro and in vivo.  Common experiments include 
measurements of kinematics and dynamics of human motion (gait analysis) 
[115], [116], soft tissue deformation and impact studies (tension-compression 
tests, impact tests, three-point bending tests) [117], electromyography for 
neuromuscular control [118], but also experiments at microscopic level with 
dynamic loading of cells with microscopic cantilevers setups [119]. Simulation of 
biomechanics systems has allowed the testing of conditions that would be 
dangerous to test with human participants or biological tissue, with applications 
ranging from vehicle safety with simulated crash tests using active human body 
models, study of biological systems with complex geometries that is not possible 
to measure their deformation response with experiments, as brain deformation 
during head impacts and faster and easier to perform parametric studies. 
However, it is important when using a simulation model to consider the range of 
parameters for which the model is valid. 
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Cellular automata. Cellular automata (CA) are defined as abstract and discrete 
(spatially and temporally) computational systems that showed its application as 
general models of complexity and as more specific representations of non-linear 
dynamics in a variety of scientific fields. CA are composed of a finite (countable) 
set of homogeneous and simple units, called atoms or cells. These cells have an 
internal status that can take a finite set of values, and that is updated at each time 
step through functions or dynamical transition rules – generally as a function of 
the states of cells in the local neighbourhood. It should be mentioned that CA are 
abstract, meaning they can be specified in purely mathematical terms and 
physical structures can implement them. Since CA are computational systems - 
they can compute functions and solve algorithmic problems, therefore displaying 
complex emergent behaviour. Because of that, they are attracting a growing 
number of researchers from the cognitive and natural sciences interested in 
pattern formation and complexity in abstract setting [120]. CA have also been 
applied to some medical problems, as for instance image segmentation [121, 
122] or infection modelling [123, 124, 125].

Clinical decision support systems. Clinical decision making involves clinicians 
making decisions about patient diagnosis and treatment [126]. Clinical decision 
making has traditionally largely been determined by human expertise. As of now, 
clinicians still make the final decisions upon weighing across evidence, for 
example from clinical data records.

Various statistical and mathematical methods [127], and knowledge-based 
approaches using dictionary-defined knowledge (e.g. with “if-then” rules) [128] 
have now been used to aid clinical decision making, resulting in more 
quantitative, standardized, accurate and objective decisions. This has led to the 
development of medical or clinical decision support systems (CDSSs), often in 
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the form of computer software or health technology, aiding human experts with 
interpretation, diagnosis and treatment [129]. 

The rise of artificial intelligence, particularly machine learning, has led to another 
form of CDSSs that is “non-knowledge-based”. Some of these approaches, e.g. 
deep learning algorithms, have been claimed to outperform human experts in 
diagnosis of specific illness [130]. However, interpretability or explainability of the 
results of such approaches hinder their use in practice [131]. It should be noted 
that CDSSs still remain not as highly adopted by users, perhaps partially due to 
general lack of engagement from clinicians, physicians or health specialists [132].

Clustering. In data mining, any problem involving the division of data into groups 
(clusters), such that each one of them contains similar records (according to 
some similarity measures), and that dissimilar records are organised into different 
clusters. It is also called  unsupervised learning, as no a priori information about 
the structure of the groups is used. An alternative definition of clustering is 
proposed in Ref. [133]: “partition a given data set in groups, called clusters, so 
that the points belonging to a cluster are more similar to each other than the rest 
of the items belonging to other clusters.” 

While consensus on a unique classification of clustering algorithms has not been 
achieved, it is customary to divide such algorithms according to their underlying 
hypothesis [134]:

• Hierarchical-based. Hierarchical clustering combines instances of the data 
set to form successive clusters, resulting in a tree form called dendrogram. 
Clusters are equal to individual instances in the lowest level of the tree, 
and upper levels of the tree are aggregations of the nodes below. 
Agglomerative and divisive clustering can be distinguished, depending on 
whether each observation starts in its own cluster, or in the complete set.
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• Partitions-based. As opposed to the previous group, partitions-based 
methods start from the complete data set and divide it into different disjoint 
subsets. Given a desired number of clusters, the process is based on 
assigning instances to different clusters  and iteratively improving the 
division, until an acceptable solution is reached. Note that partitions-based 
methods are different from divisive hierarchical methods because, firstly, 
they require predefining the number of clusters; and secondly, because of 
their iterative nature. The well-known K-means algorithm [135], possibly 
the most commonly used clustering algorithm [136, 137], belongs to this 
class.

• Density-based. If the previously described algorithms assess the similarity 
of instances through a distance measure, density-based algorithms rely 
on density measures; clusters are thus formed by groups of instances that 
form a high-density region within the feature space. This presents the 
advantage of a lower sensitivity to noise and outliers. Among the most 
used algorithms belonging to this family, the DBSCAN [138] is worth 
mentioning.

• Probability-based. Probability-based clustering combines characteristics 
of both partitions-based and density-based approaches. The most 
important of these clustering approaches are mixture models [139], which 
are probabilistic models used to model heterogeneity and represent the 
presence of  subpopulations (latent subgroups) in an overall population. 
The probabilistic component makes them a useful approach for complex 
(especially multimodal) data and can be used to obtain statistical 
inferences about the property of latent subgroups without any a priory 
information about these subgroups. In practice this is achieved using 
Expectation-Maximization algorithms [140]. Important advantages are the 
flexibility with regards to  choosing subgroup distributions and the 
possibility of obtaining “soft” stratification. 
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Complex networks. Born at the intersection of physics, mathematics and 
statistics, the theory of complex networks has proven to be a powerful tool for the 
analysis of complex systems. Networks are mathematical objects composed of 
nodes, pairwise connected by links [141, 142, 143]. Their flexibility, and indeed 
their success, resides in the fact that the identity of those elements is not defined 
a priori; for instance, networks can be used to represent from people and their 
social connections [144], market stocks and their correlations or co-ownership 
[145], to genes and their co-regulation [146]. In all cases, networks allow reducing 
such complex systems into simple structures of interactions, which can easily be 
studied by means of mathematical (algebraic) tools, while removing all 
unnecessary details.

The simplest way of reconstructing networks, and indeed the first one from a 
historical perspective, is to directly map each element composing a system to a 
node, and map explicit relationships between elements as links. Consider the 
example of a gene co-regulation network: nodes would represent genes, with 
pairs of them being connected when it is known (e.g. from direct biological 
experiments) that one of the two genes is regulating the second. Once the full 
network is reconstructed, its structure can be studied through a broad set of 
existing topological metrics [147], designed to numerically quantifying specific 
structural features; and by using these metrics as input to data mining models 
[148].

In spite of the interesting results that could be obtained through this simple 
understanding of networks, it was soon apparent that many real-world systems 
needed more detailed descriptions. Specifically, it is worth noting that a simple 
network reconstruction implies three hidden assumptions: that links are constant 
through time; that nodes are connected by just one type of relationship; and that 
relationships are explicit. Breaking these three hypotheses gave birth 
respectively to time-evolving, multi-layer and functional networks.
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Complex systems. Systems composed of a large number of elements, interacting 
in a non-linear way between them. As opposed to more simple systems, these 
interactions are essential to understand the behaviour of the complete system, 
and in some cases, they can even be more relevant than the individual elements 
[149, 150, 151]. Due to this, the study of complex systems goes beyond the 
reductionism paradigm, where understanding is based on splitting to smaller 
subsystems that are simpler to understand. In other words, while the 
reductionistic approach works bottom-up, the systems view required to 
understand complex systems is a top-down one. Complex systems displays two 
important properties. On one hand, a nonlinear behaviour, and thus tools 
originating in nonlinear analysis have been used in this domain – to illustrate, the 
analysis of time series describing the dynamics of complex systems often resort 
to the use of metrics of complexity [152], fractal dimension [153], sample entropy 
[154] and other types of entropies [155] to quantify the irregularity, or detrended 
fluctuation analysis to quantify long-range correlations [156]. On the other hand, 
emergence refers to the behaviours that may unexpectedly emerge, leading to 
order or disorder, and that cannot be explained by the dynamics of the system’s 
units. Adaptation is considered as one of the qualities of complex systems, and 
this is a property that can be observed in the biomedical domain [157].

Computational Drug Repurposing. Drug repurposing or repositioning is the 
detection of novel indications for existing drugs, in order to treat new diseases 
[158]. A major advantage of the drug repurposing strategy is that it involves 
approved compounds that have passed the toxicological safety screening 
process and have a known pharmacokinetic profile: repositioned drugs can 
hence enter directly to clinical Phase II, making the clinical phase process much 
faster than that newly developed drugs, and thus more cost-effective. 
Computational drug repurposing approaches aim to optimise and accelerate the 
drug repurposing procedures providing also means for candidate drug 
prioritization. Computational drug repurposing methods include the following: 
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Structure-based virtual screening (molecular docking), Ligand-based methods 
(Pharmacophore model, Quantitative structure-activity relationship and Reverse 
docking methods) [159], Transcriptomic-based methods [160], GWAS-based 
methods [161], Literature-based discovery methods [162], and Network-based, 
Multi-source data integration and Machine-Learning approaches [163].

Constraints. In mathematics, constrains are conditions that must be fulfilled by 
some parameters (or solutions) of a model, in order to make the latter realistic. In 
the case of mathematical modelling of complex biological systems, different 
constraints can be implemented for parameters like value range of variables, 
limitations of sum of parameters, transition speed and other type of information. 
To illustrate, the angle of joints in the human arm cannot take any value, but must 
comply with some physical limitations [164]. There are 1) general constraints that 
are true for any system (mass conservation, energy balance), 2) organism level 
constraints - consistent limitations for all experimental and environmental 
conditions for a particular organism (range of viable metabolite concentrations, 
homeostatic constraint) and 3) experiment level constraints - environmental 
condition dependent constraints for particular organism (biomass composition, 
cellular resources) [165].

Context awareness systems. Context awareness systems address complex 
environments in terms of location, identity, components and relations. Context 
refers to information that describes an entity (person, location, object) [166]. The 
study of such complex environments has been made possible by the availability 
of Wireless Sensor Networks technologies, which allow heterogeneous sensors, 
distributed in a physical environment, to share their measurements. Still, these 
technologies do not protect from problems like cross-domain sensing and 
coupling of sensors; in order to preserve performance and reliability, the data 
fusion has to be performed with caution [167]. Context awareness systems have 
an important role in the design of Healthcare Monitoring Systems (HMS), Health 
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Smart Homes (HSH) and Ambient Assisted Living (AAL), which facilitate the 
acquisition of both ambient and medical data from sensors. Such systems also 
may include reasoning capabilities consisting of data processing and analysis as 
well as knowledge extraction [168]. 

Correlation networks. Functional complex networks created by considering the 
correlation between the dynamics of pairs of nodes.

CRISP-DM. CRISP-DM stands for Cross-Industry Standard Process for Data 
Mining, an industrial group that proposed a methodology for organising the data 
analysis process in six standard steps [169, 170]. Since that, the term CRISP-
DM has been used to indicate both the group itself and the methodology. The six 
steps are:

• Business (or Problem) understanding: initial understanding of the 
objectives and requirements of the analysis to be performed; these are 
expressed as a data mining problem, and should include a preliminary 
roadmap or execution plan.

• Data understanding: in this second phase, data are collected and a first 
analysis is executed, in order to familiarise with them; identify quality 
problems; discover initial insights, and formulate initial hypotheses; and 
identify relevant data subsets.

• Data preparation: data received by the researchers are seldom ready to 
be processed; on the contrary, they usually require an initial preparation. 
This covers all of the activities required to construct the final data set, from 
selecting those data that are really relevant, to data cleaning and pre-
processing. This is one of the most important steps of the whole process, 
as the success of the final analysis strongly depends on it; and is 
responsible for most of the time and resources consumed in a data 
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analysis project, as data preparation is usually performed iteratively and 
without a fixed recipe. See [171, 172, 173] for a review of techniques and 
the motivations for data preparation.

• Modelling: phase in which data mining algorithms are applied and 
parameters are calibrated to optimal values. Some algorithms covered in 
this review are Artificial Neural Networks, Decision Trees, Random 
Forests and Support Vector Machines. While each one of these models 
have specific requirements on the format of input data, and are built on top 
of hypotheses on the patterns to be detected, in practice multiple 
algorithms are suitable in any given problem. In these situations, multiple 
models are optimised and compared; the models reaching a higher 
performance are passed to the next phase for a final evaluation.

• Evaluation: model evaluation cannot be understood only from a data 
mining perspective, e.g. in terms of the achieved classification score; a 
business perspective should also be taken into account. Only when all 
relevant questions have been addressed, can one then move to the 
deployment of the extracted knowledge.

• Deployment: when all of the information about the business problems has 
been gathered, the information and knowledge then has to be organised 
and presented.

Cross-validation. In data analysis, cross-validation (also known as rotation 
estimation and out-of-sample testing) refers to any technique used to validate a 
data mining model, i.e. to quantify how it will generalise to an independent data 
set, re-using a single data set. The initial data set is divided into multiple subsets, 
which are used to train or validate the model; this guarantees that the same data 
are never used in both tasks [174]. 

Data analysis software. With the widespread adoption of data-based solutions in 
many real-world scenarios, it is not surprising to find a large number of analytic 

Page 47 of 139 Mary Ann Liebert, Inc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

solutions, spanning from cloud pipelines to commercial and freeware software, 
and both stemming from research activities or having a commercial nature. The 
most important are here listed, classified according to their underlying structure 
in cloud, non-cloud and hybrid tools.

Non-cloud (or local) solutions. Commercial and freeware software tools for data 
analysis, which are designed to work on a local (or at least, non-cloud) 
environment. In this category, one can find: 

• KNIME [175] (www.knime.com);
• SPSS Modeller [176] (www.ibm.com/products/spss-modeler);
• RapidMiner [177] (rapidminer.com);
• Alteryx (www.alteryx.com).

These software platforms usually have a broad focus, allowing to process any (or 
most) kind of data; and they allow to construct models by connecting modules in 
a graphical interface.

Cloud-based solutions. Also known as Platform as a Service (PaaS), are 
solutions based on full cloud environments, and on the creation of web-based 
pipelines in which data are fed, processed, and returned to the user in a 
completely automatic way. The most notable solutions include:

• Google’s ML Engine (cloud.google.com/ml-engine);
• Amazon’s SageMaker (aws.amazon.com/sagemaker);
• Microsoft’s Azure (studio.azureml.net).

This approach presents two advantages: a complete scalability, and a simplified 
user experience. At the same time, they usually provide a limited spectrum of 
possible analysis - for instance, Google ML Engine completely relies on Tensor 
Flow algorithms [178].
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Hybrid solutions. These solutions position themselves in between the two families 
previously described. While they are designed for cloud deployment, they can 
easily be installed in a local infrastructure; and they shift the focus towards an 
intuitive representation of the results and simplified user experience. Among 
others, these include:

• Sisense (www.sisense.com);
• Looker (looker.com);
• Zoho Analytics (www.zoho.com/analytics);
• Tableau (www.tableau.com).

They usually allow to summarise data on high-level dashboards, with specific 
applications including business analytics [179] or website usage tracking. They 
nevertheless do not provide the analytical flexibility required by systems medicine 
applications.

Data fusion and data integration. Data fusion is the process of integrating multiple 
data sources to produce more consistent, accurate, or useful information than 
that provided by a single data source, whereas data integration refers to 
heterogeneous data obtained from different methods or sources, that are merged 
to produce meaningful and valuable information. In the field of 
system/personalized medicine, progress has been made regarding data 
integration, with large sets of comprehensive tools and methods (e.g. Bayesian 
or network-based methods), especially for multi-omics processing [180].

Data mining. General term describing the process of discovering patterns in data 
sets through the use of statistical and mathematical algorithms. Its definition 
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overlaps with that of machine learning; and the term is also used to denote the 
modelling step of the CRISP-DM process.

Decision Tree. In data mining, Decision Trees (DT) denote classification 
algorithms that rely on comprehensive tree structures, and that classify records 
by sorting them based on attribute values. Each node in a decision tree 
represents an attribute in an instance to be classified, while each branch 
represents a value that the attribute can take - see Fig. 2 for a simple graphical 
representation. Decision trees can be generalised to target continuous values, in 
which case they are usually referred as regression trees. 

Let us denote by D the set of training instances that reach a node. The general 
procedure to build the tree is:

• If all the instances of D belong to the same class, then the node is a leaf 
node.

• Otherwise, use an attribute to split the set D into smaller subsets. These 
subset will then feed subsequent nodes, by applying this procedure 
recursively until a stop condition is met.

The main differences between the many implementations of DTs available in the 
literature reside in the criteria used to decide the splitting point. Among others, 
Gini index is used in CART [181], SLIQ [182], SPRINT [183]; information gain is 
used in ID3 [184] and in the well-known C.45 [185].

The main advantage of DTs is their simplicity, both in the software implementation 
and in the interpretation of results; and their capacity of handling both numerical 
and categorical variables, thus implying little data preparation. This has fostered 
their use in medical applications, as reviewed, for instance, in [186, 187]. They 
nevertheless suffer from a less-than-perfect performance. The concept of DT 
further underpins the Random Forest classification algorithm.
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Figure 2. Example of a simple Decision Tree model, trained to choose between two treatments as a function of the age 
and sex of the patient.

Decision Support Systems. Decision Support Systems (DSSs) are information 
systems, i.e. systems designed to collect, process and make available 
information, focused on supporting different types of decisions [188]. DSSs 
typically deal with business and management challenges; can be completely 
customized by including multiple user interfaces and flexible architectures; and 
implement Optimization/Mathematical Programming tools for solution strategy 
and report. DSS are able to provide a complete view of the activities and flows 
within large and complex real production systems, integrating the supply of raw 
materials, the production phases, the products distribution, and the recovery 
within the sustainable and closed-loop supply chains. DSS in the form of 
standardized, enterprise-wide information systems were widely implemented in 
multiple sectors, including industry supply chains (e.g., pharmaceutical, 
manufacturing, agri-food [189]) and healthcare services (e.g., Clinical decision 
support systems [126, 127, 128, 129, 130]).

Deep Learning. Artificial neural networks, which form the basis of deep learning, 
were developed in the 1940s as a model for the human brain [190]. While this 
model has attracted the interest of researchers in previous periods, it made a 
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significant leap in learning and classification with the development of deep 
learning systems based on the layered learning structure of the human brain. 
One of the main reasons for this is that computational infrastructure needed to 
satisfactorily operate these complex structures that contain hundreds of layers 
and thousands of neurons have only appeared in the last decade.

Deep learning systems are mainly defined by the fact that each important feature 
of the phenomenon to be learned is automatically recognized by the algorithm 
and each group of features is learned by a separate artificial neural layer [191]. 
For example, in an image recognition system developed for human face 
recognition, different facets of the face, such as lines, eyes and mouths, and the 
general lines of the face are learned by different layers. Deep learning-based 
methods have greatly improved performance in Computer Vision and Natural 
Language Processing (NLP), and are integrated into many of the technologies 
currently used.

Figure 3. Deep Learning system developed for human face recognition. Source: https://www.quora.com/What-do-
you-think-of-Deep-Learning-2

Page 52 of 139Mary Ann Liebert, Inc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Digital Health. The term Digital Health (or d-Health) is used for denoting the 
massive and ubiquitous use of information and communication technologies 
(ICT) in health, healthcare, and medicine fields [192]. Digital Health covers the 
range of technologies used in health and medicine from genome sequencing of 
the microbes in the human organs, such as the gut and the skin, through genome 
sequencing, to the use of smartphone for supporting online telemonitoring 
(exposome level). The main goals of digital health are to improve healthcare 
customer follow-up and engagement, in parallel of resources and cost 
optimization from the health organizations and providers. As a part of the fourth 
digital revolution, “Digital Health” is using Internet of Things (IoT) and Business 
Intelligence (BI) for delivering personalized healthcare and medicine services. 
However, Digital Health is taking healthcare from a paternalistic medicine 
wherein physicians are defining and deciding how to treat the patient to being 
patient-centred. Patient-centred in the Digital Health context means that the 
electronic tools, hardware and software, are enhancing the healthcare customers 
experience and engagement by providing them with the decision support tools 
for getting better health outcomes and by considering their way of life and 
constraints [193, 194]. Nevertheless, Digital Health reduces direct human-human 
interactions and thus may induce a dehumanization of healthcare. Within Digital 
Health, a sub-subject has to be highlighted: the development of methods allowing 
improving healthcare customers’, practitioners’ and other caregivers’ (like 
patient’s family members) experience, engagement and interactions, by 
considering the digital environment as another kind of point-of-care similarly to 
clinics, pharmacies, and hospitals. One limitation of a dynamic and fast 
development of Digital Health lies in local regulations which have the objective of 
keeping health-related data and information confidential and safe, and allowing 
their use in ways ensuring data availability and integrity only for relevant 
individuals (patients and their related one when relevant, professional, and 
specific organizations). Digital Health is a full component of the Systems 
Medicine paradigm by allowing a dynamic view of individuals from the nano-level 
(e.g. gene expression as a response to an environmental change) to the mega-
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level (e.g. population interactions/reactions -discussions- on social networks as 
a response to an epidemic announcement).

Digital Twin. The concept of Digital Twin is a bridge between the physical world, 
which can consist of a living system (i.e. an animal or a vegetal, an individual or 
a population) or a cyber-physical system (e.g. a biological process, a drug 
production line, a health monitoring service). A Digital Twin is a virtual or more 
accurately a computational representation of a real-world object [195]. This kind 
of “duplicate” is allowing designing, implementing, and testing models in a virtual 
environment before or instead of performing these operations in a real-world 
context. From a Systems Medicine perspective, the digital twin is allowing 
building models of living systems (from the cell components level to the world 
population level for building and evaluating from biological to epidemiological 
models) by using socio-demographics, biological, clinical, communicational data 
collected by healthcare customers and caregivers (see Medical Informatics) 
and/or generated by Internet of Things objects (see Digital Health) [196, 197]. 

Dissipative particle dynamics. Dissipative particle dynamics (DPD) is a stochastic 
simulation technique used to study dynamical and rheological properties of fluids, 
both simple and complex. It involves a set of particles, representing clustered 
molecules or fluid regions, moving in a continuous space and at discrete time 
steps. This meso-scale approach disregards all atomistic details that are not 
considered relevant to the processes addressed. Internal degrees of freedom of 
particles are replaced by simplified pairwise dissipative and random forces, in 
order to conserve momentum locally and ensure a correct hydrodynamic 
behaviour.
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This technique facilitates the simulation of the statics and dynamics of complex 
fluids and soft matter systems. The main drawback is high computing power, but 
this has improved due to the high performance computing, which is now 
combined with this technique [198].

Among others, DPD can be used for modelling the transport of low density 
lipoproteins (LDLs) through arterial wall and analysing plaque formation, where 
the force of attraction of oxidase LDL molecules to the wall is modelled in the 
DPD solution as spring force with experimentally determined coefficient [199]; for 
creating semicircular canal models with simplified geometry, showing the 
behaviour of the fluid inside the canal, cupula deformation and movement of 
otoconia particles in order to analyse benign paroxysmal positional vertigo 
(BPPV) [200]; or for modelling self-healing materials used for corrosion analysis 
and protection [201].

Figure 4. Schematic representation of a dissipative particle dynamics (DPD) model.

Erdős–Rényi model. The Erdős–Rényi model is a model to construct random 
graphs in which all edges, or links, have the same probability of existing, i.e. they 
are independent. The model is usually denoted as ,  being the number of 𝐺(𝑛, 𝑝) 𝑛

nodes and  the probability for any link to be present. Therefore, the model starts 𝑝

Page 55 of 139 Mary Ann Liebert, Inc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

with  nodes, and each possible edge is included with probability  independent 𝑛 𝑝

from every other edge.

The simplicity of this random network model makes it an ideal candidate for act 
as null model in the normalization of network properties, although special care is 
required when the underlying real network is connected by construction, or has 
any other fixed characteristic [202].

This simplicity also made possible the calculation of the expected characteristics 
of the graph, as a function of  and , in an analytical way. Note that all these 𝑛 𝑝

results are of a statistical nature, and hence that the error probability tends to 
zero; yet, counterexamples can always be found. Among others, the most well-
known ones include [203]:

• If , then the graph will almost surely have no connected components 𝑛𝑝 < 1

of size larger than .𝑂(log 𝑛)

• If , then the graph will almost surely have a largest component of 𝑛𝑝 = 1

size .≈ 𝑛2/3

• If , then the graph will be disconnected, i.e. it will contain 𝑝 <
(1 ― 𝜀)ln 𝑛

𝑛

isolated nodes.
• Conversely, if , then the graph will likely be connected.𝑝 >

(1 ― 𝜀)ln 𝑛
𝑛

Exposome. Exposome is the systems approach for disease study that takes into 
account the interaction of internal biological mechanisms with the environment, 
in other words, the interplay of genetic, epigenetic and environmental factors. The 
concept was first introduced by Wild in 2005, and encompasses for exogenous 
and endogenous components [204]. A series of technological advances can be 
regarded as enabling technologies in this highly ambitious paradigm, including 
sensor networks monitor the air quality and make available the data, big data 
research, progress in microbiome analysis and metabolomics.  
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The study of endocrine disruptors and their role in pregnancy is one of the 
examples of this approach [205, 206]. Other work relates to cancer, and chronic 
diseases at large, involving pollutants, metabolism, inflammation, and diet. There 
are large initiatives worldwide aiming to create synergies and build knowledge on 
this new field of research, as for instance: https://www.projecthelix.eu/, 
https://humanexposomeproject.com/, http://metasub.org/.

FAIR principles. In an open-science approach, making scientific research, data 
and dissemination accessible, four principles for scientific data management and 
stewardship, were defined as Findability, Accessibility, Interoperability, and 
Reusability (FAIR), by the Force11 working group (https://www.force11.org/, 
[207]). The principles do apply not only to data but also to algorithms, tools, and 
workflows. These objectives are now becoming expectations from funding 
agencies and publishers, concerning the use of contemporary data resources, 
tools, vocabularies and infrastructures to assist research discovery and reuse by 
third-parties.

Feature selection. In data analysis, the process of feature selection consists in 
applying algorithms designed to select a subset of features, from the original data 
set, for subsequent analysis. All other features are ideally irrelevant for the 
problem at hand, and are thus disregarded. 

Feature selection yields two main benefits. On one hand, even when the studied 
data set is not of large size, it can help in data understanding, reducing training 
times and improving prediction performance. On the other hand, feature selection 
is essential when the features outnumber the instances. To illustrate, domains 
such as gene and protein expression, chemistry or text classification are 
characterised by the limited availability of instances to train models – e.g. few 
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patients and control subjects, few complete textual records, etc. Refs. [208, 209] 
extensively review methods for feature selection.

Feature selection methods are usually classified in three different families:

• Filters select subsets of variables, according to some rules, as a pre-
processing step; in other words, this selection is not made taking into 
account the subsequent classification. One of the most relevant examples 
is the Recursive Feature Elimination (RFE), based on iteratively 
constructing a classification model and removing features with low weights 
(i.e. of low relevance) – note that the classification model here used is 
independent from any subsequent classification. When features are 
added, instead of being eliminated, the result is a forward strategy.

• Wrappers assess subsets of features according to their usefulness to the 
subsequent classification problem. When the number of variables is 
reduced, this is done by evaluating all possible variable combinations; on 
the other hand, when this is not computationally feasible, a search 
heuristic is implemented. Note that here the machine-learning algorithm is 
taken as a black box, i.e. it is only used to evaluate the features’ predictive 
power. Wrappers can be computationally expensive and have a risk of 
overfitting in the model [210], in which case coarse search strategies may 
be applied.

• Embedded techniques are similar to wrappers, but integrate the search of 
the best subset of features within the classification model [211]. The 
classification is then formalised as an optimization of a two-part objective 
function, with a goodness-of-fit term and a penalty for a large number of 
variables. Embedded methods that incorporate variable selection as part 
of the training process may be more efficient in several aspects, as they 
make better use of the available data and are more computationally 
efficient. On the negative side, they are specific to a single learning 
algorithm, and are thus not generalisable.
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Finite Element Method. Finite element method (FEM) is a numerical method that 
is used for solving problems in different fields of engineering and mathematical 
physics. They can be widely categorized into structural analysis, heat transfer, 
fluid flow, mass transport, and electromagnetic potential. The finite element 
method formulation of the problem requires solving a system of algebraic 
equations. Analytical solutions of these problems generally require the solution 
to boundary value problems for partial differential equations. The domain of 
interest is divided into a finite number of simpler parts called elements and the 
method calculates values of the unknowns at discrete number of points over the 
mentioned domain. The simple equations at each point of the model are then 
assembled into a larger system of equations that describe the entire problem. 
Analysis that is associated with solving a problem using FEM is called finite 
element analysis (FEA) [212] [213].

Examples of the application of FEM in medicine include the analysis of bone – 
hip implant interactions, to obtain the information about shear stress distribution 
[214]; the development of several inner and middle ear models, especially 
cochlea models and their analysis [215]; the computational model of arteries 
[216, 217, 218]; the detection and localization of ischemic cardiac diseases [219]; 
or the examination of electrospinning jet trajectories [220].

Figure 5. Schematic representation of a finite element method (FEM) model.
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Finite Volume Method. Finite Volume Method (FVM) is a method that uses an 
approach to represent and solve partial differential equations in the form of 
algebraic equations. The term “finite volume” marks a small volume that 
surrounds each point (called node) in a mesh. By dividing the domain of interest 
in the form of mesh (structured or unstructured mesh), this method leads to robust 
schemes. Different conservation laws are used - elliptic, parabolic, hyperbolic etc. 
Finite volume method is often chosen when flux is of interest, since local 
conservativity of the numerical fluxes (conserved from one discretization cell to 
its neighbour) is a characteristic of this method. This is especially present in the 
field of fluid mechanics, semi-conductor device simulation, heat and mass 
transfer etc. By local conservativity it is meant that an integral formulation of the 
fluxes over the boundary of the control volume is obtained. A local balance is 
written on each discretization cell, which is called “control volume”. The fluxes on 
the boundary are discretized with respect to the discrete unknowns [221]. FVM 
can, for instance, be used in pharmacokinetic models [222].

Figure 6. Schematic representation of a finite volume method (FVM) model.

Frequentist statistics. Frequentist statistics is an interpretation of statistics that 
considers the probability of a random event as being the long-run (in the sense 
of Neyman, Pearson and Wald tradition) proportion of occasions on which it 
occurs, conditional on some specified hypothesis [68]. For a different 
interpretation, see Bayesian statistics.
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Functional networks. In all original studies focusing on complex networks, one 
inherent hypothesis was the fact that the structure of the network was easily 
observable: for instance, neural connections in the C. elegans can be obtained 
by physically looking at the organism. Yet, many real-world systems do not 
comply with this requirement: their structure is not observable, and we can only 
measure some aspects of the dynamics of the constituting elements. If one 
makes the hypothesis that the dynamics of each element is partly the result (or 
“the function”) of the dynamics of its peers, then the structure of interactions can, 
in principle, be inferred from the individual dynamics: the result is called a 
functional network. The introduction of this latter representation has resulted in 
an important step forward in network science, allowing a broader focus including 
both structural and dynamical (functional) relations, and shifting the focus from 
the underlying physical structures to the flow of information developing on top of 
them [223, 224]. While a detailed description of the functional network theory is 
beyond the scope of this review, it is worth reporting a sketch of the standard way 
of reconstructing them. Let us suppose that a set of time series is available, each 
one describing the dynamics of one element (node) of the system; to illustrate, in 
neuroscience these typically correspond to measurements of electric (EEG) or 
magnetic (MEG) fields generated by the brain, or the consumption of oxygen by 
neurons (fMRI). The synchronicity between the dynamics of pairs of nodes is then 
estimated, using metrics like linear correlations or causalities. Finally, the 
resulting functional networks can be analysed alone, i.e. as standard networks 
[148]; or the relationships between the physical substrate and the functional 
connectivities can be explored.

Gene Set Enrichment Analysis (GSEA). Method to identify sets of functionally 
related genes that are enriched or depleted when comparing two biological states 
[225]. It does not require that individual genes are statistically scored as 
significantly altered, as it ranks all genes and compares this rank list with 
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predefined sets of genes, usually designated as molecular signatures. Since it 
does not require any definition of a threshold for up- or downregulation, it can 
identify even weaker changes of gene expression, which are significant for a 
gene set, but not for a single gene. The gene sets or molecular signatures used 
for the comparison with the rank list, are accessible through a public repository, 
and are based on known biological functions, pathways or cell types [226, 227]. 
Computation of the gene set enrichment can be performed with open software or 
a web platform of the Broad Institute 
(http://software.broadinstitute.org/gsea/index.jsp) [226]; on other web sites such 
as Enrichr (http://amp.pharm.mssm.edu/Enrichr/), or with packages of the 
Bioconductor R environment (https://www.bioconductor.org/). Other tools can 
also be used within the GSEA software:

• Leading Edge Analysis: examine the genes that are in the leading-edge 
subsets of the enriched gene sets. A gene present in many leading-edge 
subsets is likely to be of interest.

• Enrichment Map Visualization:  Cytoscape plugin for functional enrichment 
visualization (http://www.baderlab.org/Software/EnrichmentMap)

• Chip2Chip: Converts the genes in a gene set from HUGO gene symbols 
to the probe identifiers for a selected target chip.

• GSEAPreranked: Runs the gene set enrichment analysis against a ranked 
list of genes, which you supply (e.g. mRNAseq).

• CollapseDataset: Creates a new dataset by collapsing each probe set into 
a single vector for the gene, which is identified by its HUGO gene symbol.

GSEA can also be improved by integrating external information, e.g. pathway or 
ontology information; some of the previously described software packages, 
including Enrichr and the Bioconductor R environment, include functions to 
perform this analysis.

Granger causality. Granger causality is a statistical method allowing to infer 
cause-effect relationship between events, or corresponding variables, through 
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exploitation of the concepts of explained variance and prediction. According to 
Granger [228], a signal X “Granger causes” Y if current and future values of Y 
can be better predicted using current and past observed values of X. Although 
formally known as Granger causality, this statistical method can be seen as a 
practical application of the earlier research in causality [229]. Since its formulation 
in the late 1960, Granger causality has been widely used in economics. As a 
result, Prof. C. W. Granger received the Nobel Prize in Economics in 2003.

The Granger causality has extensively been used in neuroscience, and 
specifically for the reconstruction of functional networks representing brain 
dynamics [230, 231] and of physiological networks in general [232]. More in 
general, this metric allows describing the causal relationship between pair of time 
series; it has thus been used to assess aspects from cardio-respiratory instability 
events [233], to the relationship between health care expenditure and its output 
[234].

Graph embedding. Graph embedding (also known as network embedding) is a 
representation of a graph in a vector space, where relevant graph features are 
preserved. Their advantage resides in the fact that vectors are easier to handle 
than full graphs in several domains of machine learning [148]. A lot of graph 
embeddings methods have been proposed for graph analysis in the following 
areas: nodes classification, edges (link) prediction, clustering and visualization. 
Graph embedding methods are categorized into three broad categories: (1) 
matrix factorization based, (2) random walk based, and (3) neural networks (or 
deep learning) based [235].

There are several challenges that need to be considered for using graph 
embeddings. The biggest challenge in learning a graph embedding is the choice 
of metrics, node and edges properties and features to be preserved in the vector 
representation. The learnt embeddings should represent the rich graph 
information including topological structure and auxiliary information. Moreover, 
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the graph has to be constructed in a way to represent nodes relations as well as 
to maintain the node proximity matrix in embedded space [236]. Next, different 
application domains have different prerequisites for a using a suitable graph 
embedding algorithm. Therefore, the embedding dimensionality decision based 
on graph size should meet application requirements. Unfortunately, it has been 
argued that in several real-world complex network applications, graph 
embeddings cannot represent the network’s most important features [237].

In the biomedical domain, graph embeddings methods can be used to represent 
graphs for protein-protein interactions (PPI) [238], brain regions connections 
[239], infectious diseases modelling [240], chemical reactions between 
metabolism enzymes [241] or regulatory genes interactions [242]. [243] gives an 
overview and comparison of the use of graph embeddings methods in three 
important biomedical link prediction tasks: drug-disease association (DDA) 
prediction, drug–drug interaction (DDI) prediction, protein–protein interaction 
prediction; and two node classification tasks: medical term semantic type 
classification; and protein function prediction. [244] identifies relevant gene 
functions for a biological context using network representation learning with 
neural networks based graph embeddings method. In a neuroscience context, a 
random walk based graph embedding method is used for embedded vector 
representations of connectomes to map higher-order relations between brain 
structure and function [245].

Hidden Conditional Random Fields. Hidden Conditional Random Fields (HCRFs) 
are discriminative latent variable models, used for the classification of sequences 
of events; in other words, these models are useful to process inputs that are 
graphs of local observations [246]. Given one sequence, the HCRF tries to assign 
a single label to it, by introducing a set of latent variables corresponding to each 
element of the sequence, and by conditioning the label to those variables. 
Beyond providing rules to discriminate one label from all the others, HCRFs also 
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yield the structure that is shared among labels. This classification model has been 
proved to be efficient, provided enough instances are available to validate the 
hidden structure. While still not widespread in the medical domain, some 
applications of HCRFs include the analysis of brain dynamics [247] or the 
recognition of protein folding structures [248]. The main limitation of HCRFs is 
that no rules are presently known to define the optimal number of hidden states 
for a given problem; the solution, i.e.  a trial-and-error process with cross-
validation, can be computationally expensive.

Imputation. In statistics and data analysis, imputation refers to the set of 
techniques and algorithms used to handle missing data in the raw data set. These 
can be divided in three categories:

• Listwise deletion, i.e. the strategy of deleting any instance containing 
missing data. This approach, while extremely simple and easy to 
implement, an only be used when data are missing at random (as 
otherwise the deletion would introduce a bias), and when a large number 
of instances is initially available.

• Single imputation. Missing values are substituted by new values, 
according to some rules, and a new data set is therefore created. 
Techniques include hot-decking (when instances with missing values are 
substituted by other instances, chosen at random) and mean or median 
substitution (the missing value is filled with the mean or median of that 
feature).

• Multiple imputation. Missing values are replaced by values generated 
according to a statistical rule, e.g. Multiple Imputation by Chained 
Equations (MICE) [249] or Latent Class Analysis [250]. Multiple imputed 
data sets are generated and are analysed in parallel, for then extracting a 
single consolidated result.

Imputation is never perfect nor without impact. The choice of optimal missing 
value treatment depends on multiple factors, including the nature of data and their 
correlations, the amount and randomness of missing values.
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In silico modelling. In silico modelling involves the development of computer 
models to simulate a pharmacological or physiologic process [251, 252, 253, 
254]. It is an extension of controlled in vitro experimentation. While mathematical 
electrophysiological models exist for decades (e.g. in electrophysiology of the 
heart), the increase in computing power available for research purposes with 
lower price has enabled larger scale models, for example including the cell nodes 
for a whole heart and incorporating personalised organ geometry based on 
medical imaging. Specialised platforms allow for executing the simulations and 
solving the numerical problems, nowadays typically in high-performance 
computing infrastructures. In silico modelling combines both the advantages of in 
vivo and in vitro experimentation, with the main advantage of not being subjected 
to the ethical considerations and lack of control that is the case with in vivo 
experiments. In silico models theoretically allow unlimited array of parameters to 
be included, contrary to the in vitro experiments that exist in isolation. This means 
that the results would be more realistic and applicable to the organism. 
Pharmacokinetic experimentation is often connected to the in silico modelling. In 
addition, complex in silico models have been applied to pathophysiological 
problems to provide information which cannot be obtained practically or ethically 
by traditional clinical research methods. These models have enabled to obtain 
valuable information in many fields - pure physiology, congenital heart surgery, 
obstetric anaesthesia airway management, mechanical ventilation and 
cardiopulmonary bypass/ventricular support devices. In spite of many 
advantages, the interested researcher should also be aware of one main 
drawback of in silico modelling, i.e. that not all strategies have been validated in 
vivo [255].

Integrative analysis. “Integration” may have different connotations, depending on 
the context [256]. In its most general sense, it refers to combining things, such as 
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two viewpoints, or multiple systems, or multiple data sets. For life science data 
and in particular functional genomics, Lu et al. [257] defined data integration as 
the “process of statistically combining data from different sources to provide a 
unified view and make large-scale statistical inference”.  For multi-omics data 
integration, clearly this definition is too limited, in that it only refers to statistics as 
a means and underappreciates the opportunities that lie in creatively combining 
analytic methodologies (for instance, statistics and machine learning). A more 
challenging definition for data integration in complex disease analysis involves 
the process of combining data within a generic framework that encompasses 
organizing principles for the interaction of different types of systems. This 
definition does not explicitly refer to statistical, bioinformatics or computational 
tools but to any approach that fits within a transdisciplinary viewpoint. It includes 
data fusion as well as more fancy and more elaborate forms of combining 
evidence from different data sets or sources [258]. Furthermore, it agrees with 
the definition of Oxley and Thorsen [259] as the process of connecting systems 
(which may have fusion in them) into a larger system. Apart from data integrative 
analysis, integrative analysis sometimes also refers to the integration of analytic 
tools or methods, to combine different analytic viewpoints to the same data.  

Interactome. Map representing the whole set of molecular interactions in a 
particular cell. While usually interactome specifically refers to physical 
interactions, it can also be used to describe sets of indirect interactions among 
genes. As molecular interactions can occur between any pairs of molecules 
composing the cells (including proteins, nucleic acids, lipids, carbohydrates, and 
so forth), a great number of interactome maps can be defined; nevertheless, the 
most common and well-known include:

• The protein–protein interaction (PPI) network (PIN);
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• The protein–DNA interactome, also called a gene-regulatory network, a 
network formed by transcription factors, chromatin regulatory proteins, and 
their target genes;

• Metabolic networks, representing metabolites and how they are converted 
into each other by enzymes.

For the corresponding mathematical representations of such maps, see biological 
networks.

Internet of Things. Internet of Things (IoT) is related to the evolution of the internet 
towards integrating real, everyday life devices called things. 

A comprehensive description is provided in [260]: IoT “is a concept and a 
paradigm that considers pervasive presence in the environment of a variety of 
things/objects that are able to interact with each other and cooperate with other 
things/objects to create new applications/services and reach common goals”. 
Thus IoT aims at achieving a virtual representation of a set of physical devices 
through the deployment of technologies and architectures involving large-scale, 
loosely coupled systems.
 
Generally speaking, basic IoT systems components include: IoT Standards and 
Ecosystems, Event Stream Processing, IoT Device Management, IoT Platforms, 
IoT Analytics, and IoT Security [261]. An important aspect is the IoT Reference 
Model, the model that defines all architectural aspects of the system, and which 
is composed of the following sub-models: IoT Domain Model, IoT Information 
Model, IoT Functional Model, IoT Communication Model, and IoT Security Model 
[260]. Moving from a theoretical to a physical representation of IoT, this is usually 
composed of: Smart devices, Network, Data processing, Data storage, Data 
aggregation, data analytics, and process integration. 
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Communication between IoT elements can be addressed through multiple 
paradigms: device to device communication, device to IoT platform 
communication, device to gateway and data aggregation. The relation between 
IoT and Multiscale Computing (MSC) and Multiscale Modelling and Simulation 
(MMS) can be related to the following components: IoT as data provider for 
Multiscale Modelling and Multiscale Modelling as a way to experiment and 
validate complex processes with the aid of IoT.

Many synergies have been found between IoT systems and Multiscale Modelling. 
First of all, IoT can facilitate data provision to the modelling phase, by handling 
access, routing and recording of data acquired from sensors attached to smart 
objects. Secondly, IoT devices naturally measure the physical space at different 
resolution and conceptual levels, thus providing a multiscale view of the space. 
In addition, IoT can simplify the understanding of the raw data through 
technologies related to Big Data, semantic representations, ontologies and 
machine-interpretable representations of domain knowledge, and context 
awareness. 

Multiscale IoT Systems for Experimental Multiscale Models can be used to 
acquire data at multiple scales corresponding to the scales selected in the 
Multiscale Model. Such IoT systems design use multiscale principles. The 
complex processes include Machine to Machine and Human to Machine 
Interaction. Relevant enabling technologies are related to Heterogenous objects, 
Heterogenous distributed systems (P2P, Wireless Sensor Networks, Cloud 
Computing), Complex Systems of Systems. IoT as a complex systems is not a 
simple set of subsystems and involves data and energy transformation, 
interaction, interoperability, feed-back and feed-forward structures, self-
organization and self-management [262].

An important development of Internet of Things with applications in medicine is 
referred as Internet of Medical Things. The Internet of Medical Things (IoMT) can 
be described as an internet based environment connecting medical devices and 
services. Applications of IoT technologies in medicine are increasingly common 
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[263, 264, 265]. In cancer treatment studies blood pressure monitoring bracelets 
and tracking apps have been used to gather relevant information. Continuous 
Glucose Monitor (CGM) can be connected in an IoT environment to transmit data 
to mobile devices thus facilitating the analysis of blood glucose levels. A 
Bluetooth-enabled coagulation system has been used in connection to IoT 
environment in order to help patients become aware of potential blood clots and 
transmit results to healthcare providers. A wearable smart asthma monitor can 
detect symptoms related to asthma attacks and connected to an IoT environment 
can track and detect the inhaler.

Lattice Boltzmann method. Lattice Boltzmann (LB) method is a discrete numerical 
method used mainly for simulations of fluid flow [266, 267, 268, 269, 270]. The 
main advantage of this method is that it is not necessary to solve differential 
equations, which makes the implementation relatively simple and it is possible to 
parallelize the software. In LB method, fluid is observed as a set of fictional 
particles. These particles can move along the predefined directions, and the 
dynamics of their motion is modelled through their mutual collisions and further 
propagation in the observed domain. A special distribution function is defined, 
and this function depends on the state of neighbouring particles and has an 
identical form for all the particles, i.e. for all the nodes in the lattice mesh. 
Macroscopic quantities, such as density, pressure, velocity, are calculated using 
the components of the distribution function [271, 272].

Examples of the use of the Lattice Boltzmann method in medicine include the 
modelling of the motion of endolymph through the semicircular canals of the inner 
ear [273, 274]; and the analysis of the numerical and experimental transport of 
low-density lipoproteins (LDLs) through arterial walls [275]. Open-source 
software implementing LB methods are also available, see for instance 
https://www.openlb.net and https://palabos.unige.ch.
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Figure 7. Graphical representation of the Lattice Boltzmann (LB) method.

Machine Learning. Machine learning is the science of using computers to 
discover new information from observations [276, 277]. There are several families 
of machine learning methods: supervised learning, unsupervised learning and 
semi-supervised learning. The choice of the strategy depends on the nature of 
the used data. A large and complex database is commonly required to develop a 
machine learning model. In system medicine field, bio-marker extraction or 
human genome classification is typical example of machine learning model. For 
further details, see also data mining, CRISP-DM, deep learning.

Mediation analysis. If two variables (an independent  and a dependent ) show 𝑥 𝑦

a statistically significant correlation, it does not necessarily mean a direct 
causative link, as the correlation might be caused by a third variable (the 
mediator), which is often non-observable – and which is influenced by the 
independent variable and by itself influencing the dependent variable. A 
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mediation analysis can elucidate such interactions and dependencies and helps 
to differentiate between direct and indirect effects [278, 279]. This type of analysis 
can be performed with specific packages of the Bioconductor R environment or 
with add-ins of commercial software such as SPSS. It is important to note that a 
mediation effect can be full or partial – and that it can be moderated by additional 
parameters. Additionally, it has to be stated though that mediation analysis 
cannot be used to detect or analyse multiple interdepencies.

Medical Informatics. Medical informatics (also known as Health Informatics or 
Biomedical Informatics) is a science at the crossroad of information science, 
computer science, social sciences, and health and medical sciences. This 
research area deals with all the components of information systems (data 
acquisition, information and knowledge resources, devices and networks, 
regulation and ethics, and more) used for supporting and improving healthcare 
management (e.g. clinical knowledge management), delivery (e.g. patient-related 
data follow-up over time) and research (e.g. developing standards encoding 
diagnostic for epidemiological purposes) [280, 281, 282, 283]. Medical 
Informatics is an umbrella and the core for different sub-specialities such as 
clinical informatics, nursing informatics, public health informatics, consumer 
health informatics, and veterinary informatics. As a multidisciplinary field, the 
Medical Informatics playground consists of developing and investigating theories, 
models, methods, processes and systems, used for generating, storing, 
retrieving, using and sharing health and medical data, information, knowledge, 
and decision support. From an application perspective, medical informatics is 
actively and dynamically investigating and supporting health and medical 
reasoning by experimenting models and simulations  across a wide spectrum: 
from molecules to populations, from a biological system point-of-view to a global 
population and One Health perspective. Moreover, end-users are a crucial 
component of the overall system in Medical Informatics. For efficiency reasons, 
researchers in the field of Medical Informatics have to continuously monitor the 
changes in different spheres such as the social, economic, ethical and 
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educational, and update their models in accordance to these changes. In recent 
years there has been an important and growing trend of applying algorithms and 
know-how from the fields of Business intelligence and automation in Medical 
Informatics, e.g. data and text mining, analysis, and information and knowledge 
management – see clinical decision support systems. From the integrative 
perspective of systems medicine, Medical Informatics investigates and delivers 
end-to-end frameworks supporting complex medical decisions, driven by 
evidence-based medicine for continuously improving health and disease 
management at the individual and populations levels [284]. One of the most 
critical parts of research done in Medical Informatics considers ethical and legal 
regulations and constraints in the technological side of medical field [285]. As 
new means of measuring, communicating and managing patients emerge, there 
is a need to continuously monitor and update the requirements for ensuring 
security, i.e. keeping confidentiality, integrity, and availability of health and 
medical data sensitive data.

metaboAnalyst. Part of the same family of websites including networkAnalyst and 
microbiomeAnalyst, this web site provides a visual analytics platform for meta-
analysis of metabolomics data (www.metaboanalyst.ca) [286].

Metabolomics. Metabolomics is the scientific study of a set of metabolites present 
within an organism, cell, or tissue. It was also defined as a global measurement 
of small molecules (metabolites), which are produced or modified in an organism. 
Metabolites can also result from a stimuli (nutritional intervention, drugs, genetic 
perturbations, etc.), are present in a system (blood, urine, saliva, etc.) and 
accessible to analysis [287, 288]. Metabolomics is one of the functional level tools 
being employed to investigate the complex interactions between metabolites but 
also their regulatory roles through their interactions with genes, transcripts and 
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proteins. It is actually considered as a powerful phenotyping tool to better 
understand the biological mechanisms involved in the pathophysiological 
processes and identify biomarkers of metabolic deviations [289]. Indeed, it 
provides, at a molecular-level, multivariate information of multi-compartmental 
biological systems that reflect changes in biological processes [290].

microbiomeAnalyst. Part of the same family of websites including networkAnalyst 
and metaboAnalyst, this web site provides a visual analytics platform for meta-
analysis of microbiome data (www.microbiomeanalyst.ca) [291].

Model robustness. Model robustness is a widely used concept in modelling under 
uncertainty, namely with Robust Optimization approaches. For that, the objective 
function of a Stochastic Linear/Quadratic Programming is modified by introducing 
penalization parameters related with non-desired attributes (e.g., high variability 
on solutions, non-satisfaction of products demands, over-designing of production 
capacities, non-utilization of expensive equipment), or probabilistic restrictions 
are modified by enlarging/narrowing “soft” bounds (e.g., “worst case” analysis) 
[292].

For instance, the Two-Stage Stochastic Programming (2SSP) [293] approach for 
the capacity expansion of a pharmaceutical supply chain allows both the 
promotion of solution robustness (by penalizing the deviations on the solutions, 
e.g., minimizing the solutions variance) and the model robustness (e.g., 
minimizing the expectances for the non-desired attributes). Namely: i) at the first 
stage, the capital and investment decisions must be taken (that is, the project 
variables are calculated “here-and-now”); ii) in the second stage, the uncertainty 
is introduced through a set of scenarios and the related probabilities (in this 
“recourse phase”, it occurs the probabilistic calculation of the control variables). 
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Then, model robustness is obtained when the optimal solution does not present 
high values for the probabilistic measures of the attributes to avoid (namely: for 
the expectance of excess/unused production capacities that would imply larger 
investment costs; and for the expectance of unsatisfied products demands that 
would impact negatively the patient’s health). Model robustness is also strongly 
connected with other concepts of interest, such as Model Verification and 
Validation, Parameter Sensitivity Analysis and Uncertainty Quantification, 
Probabilistic Risk Analysis. Several drawbacks can occur on model robustness 
developments, e.g., due to resource consuming, standard accuracy, or 
uncertainty see [294, 295] for details.

Model Verification and Validation. Model verification is a process to verify if a 
given model has been directly coded or mathematically represented; on the other 
hand, model validation aims at verifying if the implemented model is the right one 
for the biological system of interest. Model verification is a straightforward task, 
thanks to many direct techniques to check and debug computer programs. Model 
validation, on the other hand, is more complex, and is commonly performed using 
theoretical outcomes or experimental measurements. It is important to note that 
model validation of biological systems is extremely complex and difficult due to 
the lack of in vivo data and measurement protocols [296, 297].

Morphometric similarity networks. Morphometric similarity networks are graph-
based representations of the structure of the brain [298]. The study of structural 
differences in the brain by topological analysis based on graph theory has the 
disadvantage of generating a connectivity matrix at the group level and, therefore, 
the connectivity parameters are calculated at the group level. Recently, a new 
technique has been developed that allows to generate a connectivity matrix at 
subject level based on the interregional similarity of multiple morphometric 
parameters measured by multimodal MRI [298]. Typical morphometric 
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measurements taken from multimodal image data for each brain region are: 
fractional anisotropy (FA), mean diffusivity (MD), magnetization transfer (MT), 
grey matter volume (GM), surface area (SA), cortical thickness (CT), intrinsic 
(Gaussian) curvature (IC), mean curvature (MC), curved index (CI) and folding 
index (FI). For each subject, these values will form a vector of morphometric 
measurements for each region. Then, the morphometric similarity matrix (MSM) 
of the subject will be obtained by calculating the Pearson’s correlation between 
the vectors of the morphometric characteristics of each pair of regions. Finally, 
the morphometric similarity network (MSN) will be obtained by thresholding this 
MSM. Therefore, we end up with one network (MSN) per subject, which will allow 
us to calculate the (structural) connectivity parameters at the subject level. 
Recently some papers have been published that demonstrate the validity of this 
technique [299, 300].

Multiphysics systems. Multiphysics systems are systems consisting of more than 
one component, each governed by its own principle(s) for evolution or equilibrium 
(conservation or constitutive laws) [301]. Two possibilities for classification are 
related to the coupling:

• bulk couplings, i.e. through relations that are active in the overlapping 
domains of the individual components;

• couplings happening on idealized interfaces of lower dimension, e.g. 
through boundary conditions that transmit fluxes, pressures, or 
displacements.

Some examples of bulk-coupled multiphysics systems include radiation with 
hydrodynamics in astrophysics, electricity and magnetism with hydrodynamics in 
plasma physics (magnetohydrodynamics), and chemical reaction with transport 
in combustion or subsurface flows (reactive transport). Since forward models are 
simulated successfully, inverse problems, sensitivity analysis, uncertainty 
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quantification, model-constrained optimization, and reduced-order modelling are 
gaining more attention. The physical model is, in these advances, augmented by 
variables other than the primitive quantities in which the governing equations are 
defined. These variables may be sensitivity gradients, probability density 
functions, Lagrange multipliers, or coefficients of system-adaptive bases. 
Equations that govern the evolution of these auxiliary-dependent variables are 
often derived and solved together with other physical variables [302]. For an 
example of applications of multi-physics systems to medicine, see [220].

Multi-layer networks. Complex networks whose interactions are defined on more 
than one layer. In the standard complex network approach, links between nodes 
are usually of a single type, the only difference between them being a (generally, 
real) number, quantifying the weight of the connection. Nevertheless, considering 
all links as homogeneous can be an important constraint, as connections in real-
world systems may be of different types. A biological example can help clarify 
this. One of the most interesting success in recent neuroscience has been the 
creation of a full map of the C. elegans’ neural network, consisting of 281 neurons 
and around two thousand connections [303]. Yet, connections are not 
homogeneous: neurons can communicate through chemical and electrical (ionic) 
links, with completely different dynamics and time scales. Therefore, a correct 
representation should include two independent layers of connections. This 
resulted in the creation of the multi-layer network concept, i.e. graphs whose 
connections are organized in separate layers [304]. Multi-layer networks explicitly 
incorporate such heterogeneity, such that each link type (relationship, activity, 
category) is represented by a different layer, with the same node having different 
neighbours in each layer.
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Figure 8. Example of a graphical representation of a multi-layer network composed of three layers.

Multiscale Biomolecular Simulations. Biomolecular simulations are computer 
simulations of molecular dynamics of biological systems, such as proteins, 
nucleic acids, saccharides, membranes and their complexes. Multiscale 
biomolecular simulations are simulations of molecular dynamics of biological 
systems at different levels of granularity, differing in spatial resolution and other 
aspects.

First attempts to simulate molecular systems started in 1950s. The first 
biomolecular simulation was published in 1977 by J. Andrew McCammon, Bruce 
R. Gelin and Martin Karplus (2013 chemistry Nobel Prize winner) [305]. The 
authors simulated several picoseconds of bovine pancreatic trypsin inhibitor in 
vacuum. An important milestone of biomolecular simulations was the 
development and refinement of biomolecular force fields (formulas and their 
parameters for calculation of potential energy from atomic coordinates) and 
simulation software. Packages CHARMM, AMBER, Gromos, Gromacs, NAMD, 
ACEMD and BOSS have been tuned for high performance on a wide range of 
machines and operation systems.

There are several types of granularity in multiscale biomolecular simulations. The 
main reason for interest in multiscale versions of biomolecular simulations is in 
the fact that these simulations are extremely computationally expensive. Each 
atom in a typical solvated biomolecular system interacts (covalently or non-
covalently) with another approximately 5.000 atoms. These interactions must be 
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evaluated in every simulation step. The integration step of most biomolecular 
simulations is in a femtosecond scale. It is therefore necessary to carry out 
millions of steps (and evaluate interactions of millions of atomic pairs in each 
step) to simulate nanosecond time scales.

The first type of granularity is in modelling of interaction between atoms. There 
are two major models that make it possible to calculate energy and forces in a 
molecular system - quantum mechanics and molecular mechanics. Quantum 
mechanics models the system by solving Schrödinger equation for electrons. On 
the other hand, molecular mechanics represents atoms as particles connected 
by simple mechanical “springs” and interacting via interatomic potentials with 
simple mathematical descriptions. Electrons are not explicitly modelled. Quantum 
mechanics calculations are significantly more complex and, therefore, more 
computationally expensive. The advantage of quantum mechanics is that it does 
not require ad hoc sets of parameters for each class of molecules. Furthermore, 
most molecular mechanics models do not take into account the reactivity of the 
molecular systems. Molecular mechanics (with few exceptions) keeps the 
chemical structure fixed during the whole simulation, i.e. it disallows breakage 
and formation of covalent bonds in chemical reactions. For this reason quantum 
mechanics is used to study the mechanism of chemical reactions.

Enormous computational costs of quantum mechanics led to a mixed (multiscale) 
model of quantum mechanical and molecular mechanical (QM/MM) calculations. 
For example an enzymatic reaction can be studied on a model of enzyme with 
the substrates and active-site residues modelled by quantum mechanics and the 
rest of the system modelled by molecular mechanics.

This second type of granularity addresses the number of particles in the 
molecular system. These models differ in the number of atoms represented by a 
single particle. In a standard fine-grained (“all-atom model”) model there is one 
particle representing one atom. All quantum mechanical models are all-atom 
models. Simplified versions called “united-atom models” represent certain groups 
of atoms, such as CH, CH2 and CH3, as a single particle. Such particle represents 
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the bulk properties of the whole group. This reduces the overall number of 
particles in the system and accelerates the simulation without significant loss of 
resolution.

Further coarse-graining in so-called “coarse-grained models” replaces multiple 
atoms, typically four non-hydrogen atoms, by a single particle. Coarse-grained 
simulations make it possible to study several orders of magnitude longer time-
scales than all-atom simulations. The prize paid for this is loss of resolution. 
Coarse-grained simulations have been extremely successful in simulations of 
membranes, interfaces and related systems. They are less frequently used in 
studies requiring precise atomic resolution, such as in drug discovery. Models 
mixing all-atom and coarse-grained simulations (similarly to mixed QM/MM 
models) have been developed to address this problem.

There are examples of studies with further coarse-graining. For example, elastic 
network models of proteins represent individual amino acids as particles 
connected by harmonic springs. This representation of a protein resembles 
models used in civil engineering to test mechanical stability of constructions. 
They are used in biomolecular simulations, but more frequently, they are studied 
by static approaches such as normal mode analysis. Surprisingly, bulk 
mechanical properties of biomolecules can relatively accurately predicted using 
such simplified models.

The major aim of biomolecular simulations is to predict certain property of the 
biomolecular system. The third type of granularity is in depiction of such 
molecular properties. Biomolecular simulations produce trajectories - thousands 
of snapshots of thousands of atoms. These pieces of big data can be analysed 
to extract relevant low-dimensional properties of the systems. Such properties 
can be than used to build thermodynamic and kinetical models of the simulated 
system.

The last granularity is the computational granularity. As already mentioned 
biomolecular simulations are computationally expensive. Most software used in 
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biomolecular simulations has been developed to run in parallel on multiple cores 
of a CPU (multithreading) and multiple CPUs and node connected by Message 
Passing Interface. Recently Fast Multipole Method [306] is being introduced into 
biomolecular simulations in order to enable multiple levels of parallelism. 
Alternative hardware such as graphical processing units and special purpose 
hardware have been successfully used. The multiscale nature can be further 
extended by application of special multiple ensemble or multiple time scale 
methods.

Multiscale modelling. Multiscale modelling is a numerical approach to study the 
biological systems of interest at multiple time and length scales, i.e. in which 
multiple models at different scales of time and/or space are used simultaneously 
to describe one complex system [307]. To illustrate, a multi-cellular organism can 
be modelled at different levels, e.g. DNA, cells, fibres, and tissues; with each 
model getting input from the lower-level one [308].

Those models are commonly developed using a combination of several 
numerical methods. Finite element method could be used to model system 
behaviour at organ and tissue scales. Agent-based simulation could be used to 
model single cell or cell population behaviours. Molecular dynamics could be 
used to describe the movements of atoms and molecules. To make the link 
between scales, homogenization theory could be used. This theory allows 
constitutive behaviours at the macroscopic level to be described using the 
information from interactions between macroscopic and microscopic levels. 
There are two main multiscale modelling strategies. The first one is the 
hierarchical simulation in which the system behaviour is separately described and 
simulated for each scale and then the interaction is performed. The second one 
is the concurrent simulation in which all system behaviours and their interaction 
are simultaneously described and simulated. There is no time delay by using the 
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second strategy but the strategy is complex for model development and 
implementation.

The importance of multiscale modelling lies, on one hand, in the fact that available 
macroscale models are usually not accurate enough, and on the other hand, in 
the fact that microscale models are not efficient enough and/or offer too much 
information. By integrating both approaches, the idea is to find a compromise 
between accuracy and efficiency [309].

Figure 9. Graphical representation of the typical scales in a multiscale modelling.

Network Analysis Software. 
• NetworkX [310]. Python library used for the creation, manipulation, and 

study of the structure, dynamics, and functions of complex networks. This 
allows the creation of networks with different algorithms, evaluation of a 
large set of standard metrics, and finally display the results in an easily 
understood way. Freeware. Available at networkx.github.io.

• Cytoscape [311, 312]. Software specialized on the representation of 
networks, with some additional tools for the integration of biological data. 
It also provides some basic network analysis capabilities. Freeware. 
Available at www.cytoscape.org.

• Gephi [313]. Interactive visualisation and exploration platform. Freeware. 
Available at gephi.github.io.
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• Pajek [314]. Software for representing complex networks, with some basic 
analysis capabilities. Freeware. Available at mrvar.fdv.uni-lj.si/pajek/.

• VisANT [315]. Software for the visual study of metabolic networks and 
pathways. Freeware. Available at visant.bu.edu.

• IBM ® i2 Analyst's Notebook. Software for the integration of social data 
and network analysis. Commercial. Information at www-
03.ibm.com/software/products/en/analysts-notebook.

• SAS ® Social Network Analysis. Software for the analysis of social 
networks. Commercial. Information at 
support.sas.com/software/products/sna/index.html.

networkAnalyst. Part of the same family of websites including metaboAnalyst and 
microbiomeAnalyst, this web site provides a visual analytics platform for meta-
analysis of differentially expressed genes or proteins (www.networkanalyst.ca) 
[316, 317]. It allows input of raw RNA-sequencing data, single or multiple gene 
expression tables or pre-calculated lists of differentially regulated genes with 
expression values. The input is then compared with known interaction networks 
covering not only various protein-protein interactomes, but also relations between 
genes and miRNAs; transcription factors, drugs or chemicals. By default, a first 
order network is computed, which can also be switched to a second order network 
to increase the number of interactors, or the zero-order network to decrease the 
number of nodes. If the complexity is too high, it can be reduced with filters on 
betweenness or degree. Another option is to calculate a minimum network, which 
comprises the least number of nodes that are required to link the input genes. 
The network can be downloaded in a Cytoscape-compatible SIF-format, but the 
standard routine is to visualize it within the web platform in an adjustable manner 
including up- or downregulation of expression levels and different layouts, which 
can be saved in SVG-format. Moreover, and most importantly, the network can 
then be statistically compared with different databases such as KEGG, 
Reactome, gene ontologies or transcription factor motifs to obtain functional 
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enrichment values. A module explorer can be applied to extract subnetworks with 
statistically elevated links and these can be further analysed for functional gene 
enrichments.  

In case that the differential expression is computed on 
the NetworkAnalyst platform, gene clustering can be performed comprising 
heatmaps, principal-component analysis (PCA) or t-distributed stochastic 
neighbour embedding (t-SNE). Moreover, Gene Set Enrichment Analysis can be 
done and  Venn- or Chord diagrams can be created for multiple comparisons. 

Network medicine. General term to design applications of complex networks 
theory to medicine, and hence to the identification, prevention and treatment of 
diseases [84, 318]. It is buttressed by the idea that elements constituting our 
bodies at all scales (e.g. from genes, to cells and organs) do not exist in an 
independent fashion, but are rather connected by a dense set of 
interdependencies. Understanding one disease thus goes beyond the simple 
analysis of one element. For further examples, see biological networks.

Null models. In complex networks theory, a null model consists of a set of 
networks with some characteristics equal to the graph under study, while being 
random in all other aspects [319]. The simplest case is therefore a set of 
completely random networks, i.e. Erdős–Rényi graphs, which share the same 
number of nodes and links, but are otherwise completely random.

The main advantage provided by null models is that they allow breaking the 
coupling existing between different topological properties, and thus allow 
comparing networks with heterogeneous characteristics. To illustrate, the value 
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of a given topological metric can be normalized with what expected in the null 
model, thus helping to assess whether the observed value is special or, on the 
contrary, is the result of the other restrictions imposed in the model. The simplest 
solution involves the calculation of a Z-Score, which indicates how many standard 
deviations the observed metric is from the (null model’s) expected value [202].

Nvidia Clara. Nvidia Clara is a computational platform that gathers CUDA 
accelerated tools for medical imaging and genomics. The Software Development 
Kit (SDK) provides libraries for computing, visualization and AI. The SDK allows 
the users to deploy their applications in any GPU platform they have access 
to. Within this platform, Nvidia Clara Medical Imaging provides tools for data 
annotation, training of AI models, and deployment in the case of medical imaging 
applications (e.g. computerized tomography (CT), magnetic resonance 
images (MRI), ultrasound, X-ray, and mammography). Adapting one of the 
included in the SDK pre-trained AI models with transfer learning accelerates the 
AI modelling as less time and training data are used. On the other hand, the 
Nvidia Clara Genomics platform gathers CUDA accelerated tools for genomics 
sequencing and analysis. Biomedical examples of the use of Nvidia Clara include 
the segmentation of images of brain tumours [320], and gene sequencing [321].

Object oriented modelling. For effective diagnosis and treatment of diseases we 
need to understand the dynamics of metabolism, including the metabolism of 
drugs. Here, the large scale computational models that describe dynamics from 
the metabolic, gene regulatory and signal transduction perspectives are of crucial 
value [322]. Different modelling approaches are in use, including the  object 
oriented modelling. This technique  is originally derived from machinery. Dymola 
(Dynamic Modeling Laboratory) has been developed by Dassault Systems, a 
branch of the Dassault group that produces also airplanes. Dymola sets the 
basics of object oriented modelling of the biological systems even if its initial  
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intention has been  for use within automotive, aerospace and robotics process. 
In Dymola we can describe the entire multi-component systems and in this 
manner represent the real world as good as possible. 

The basics of object oriented modelling is represented by a library of objects. An 
object is an element corresponding to components of mechanical, electrical, 
vehicle dynamics, etc., and also biological systems. In building the model, the 
objects from the library are moved by drag-and-drop and interactions between 
the model  components are described by graphical connections that model the 
physical coupling of the components. The unique feature of object oriented 
modelling is that the models are intuitively organized to mimic the real physical 
or biological systems. In systems medicine  we can imagine that large 
macromolecules (genes, mRNAs, proteins including enzymes and  transcription 
factors, etc.) are objects.  The signalling pathways represent links or information 
that is  transferred  through connections  between these objects.  

Nowadays, Modelica is used as the most popular programming language for 
object-orienting modelling. The benefit of Modelica is that the users can  create 
their own libraries. BioChem has been designed  as a library for metabolic 
pathways [323] that describes enzymatic reactions in different  biochemical 
pathways. SysBio library [324] was initially used to construct the SteatoNet model 
with multi-layered regulation, including the transformation of genes to proteins 
and the transcriptional regulation [325]. Additionally, SteatoNet describes 
multiple tissues i.e. the liver and adipose tissue and their connections through the 
blood.  

The beauty of object oriented modelling is that the number of parameters that 
need to be incorporated into the model is small. We can thus avoid problems with 
parameter estimation or model overfitting. This is possible due to observation of 
the normalised steady-state of the system’s response, allowing modelling in the 
absence of parameters that describe the dynamics of the observed system. 
Another benefit of this type of modelling is the ability to incorporate specific data 
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towards i.e. personalisation. In this manner, the LiverSex has been produced as 
the first model describing the distinct liver metabolism of females and males [326].

Ontologies. Ontologies (also known as controlled vocabularies and semantic 
representation) can be defined as formal representations of knowledge in a 
certain domain, in an understandable way for people and computers [327]. They 
are made of defined classes of entities, structured in hierarchy where concepts 
are connected with standardized relationships [328]. In biomedical research, a 
great variety of ontologies have been developed to describe domain knowledge, 
for example, the Gene Ontology (GO) or the Disease ontology. BioPortal is a 
repository of biomedical ontologies, many of which can be openly reused. In 
addition, the Open biomedical Ontologies (OBO) is an established platform 
developed for interoperability and shared principles between ontologies [329]. 
The question of ontology relevance in the context of systems medicine has been 
particularly discussed. In fact, because of its intrinsic paradigm change, such 
ontologies must switch from a biological structure to a biological function 
architecture [330]. Beyond the existing ontologies, the US National Research 
Council proposed a new taxonomy for biology and medicine taking into account 
the multiple aspects of basic science and clinical characteristics to define disease 
endotype [331]. The development of phenotype-driven ontologies is also of great 
interest for the field [332]. However, with the explosion of heterogeneous clinical 
data and scientific information, harmonization between scientific communities as 
well as their participation to computational resources are essential for the future 
of ontologies in translational research and precision medicine [333].

Parameter estimation. Mathematical models in systems biology and systems 
medicine have a structure that characterizes interactions between elements of 
the system. Next level of detail are the parameters of interactions to quantify the 
intensity of interaction. Some of model parameters can be measured or found in 
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the literature while information about others is missing. Parameter estimation 
[334] can be used to estimate the unknown parameters by fitting of the model to 
the available experimental data. Usually it is solved as a numerical optimization 
problem where the difference between measured data and model calculations 
have to be minimized searching the best combination of unknown parameter 
values. Parameter estimation can have several results: 

• The model behaviour fits the experimental data. It is not expected that 
model behaviour would match each and every measurement as they 
contain measurement errors and mathematical models are always 
simplifications of reality. Even in case of success, parameter identifiability 
should be checked (see Parameter identifiability).

• The model behaviour does not fit well to the experimental data. There can 
be several reasons: model definition and range limitation of estimated 
parameters have to be checked. Another problem can be the selection of 
inappropriate optimization method that leads to local minimum or 
stagnates [335].

• The model cannot reproduce the expected type of behaviour. This may be 
an indication that the structure of the model does not correspond to the 
system of interest; and that, without suitable changes in the model 
structure, a satisfactory behaviour as well as an identification of 
parameters cannot be reached.

Parameter identifiability. In case of successful parameter estimation, model 
parameters cannot be always trusted [334]. It can happen that a value of a 
particular parameter is not important for particular experimental set-up and any 
value can produce acceptable fit of model with experimental data. Another 
parameter unidentifiability reason can be structural unidentifiability [336] where 
the structure of model in combination with experimental results does not allow 
identification of particular parameters. For instance, if just summary flux of two 
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parallel metabolic pathway branches is measured, parameters defining each 
particular flux cannot be identified.

Parameter Sensitivity Analysis and Uncertainty Quantification. Parameter 
sensitivity analysis and uncertainty quantification are two important best practices 
when developing and simulating biological systems of interest. Parameter 
sensitivity analysis allows to determine which parameters are sensitive to the 
input variations with the used constitutive laws [337, 338]. This analysis is 
commonly time-consuming due to the repetitive nature of the procedure. 
Moreover, the determination of a plausible perturbation value range is also a 
difficult issue. A relative percentage (e.g. ) is usually used. Uncertainty ± 10%

quantification aims to model the uncertainties related to the system input values 
or variables and their propagation on the model outcomes through the used 
constitutive laws. A lot of data is commonly needed for uncertainty quantification. 
Data assumption could be performed with limited data samples but the accuracy 
level is questionable. Precise and imprecise probabilities could be used to model 
uncertainties. Monte Carlo is a classic example of uncertainty propagation 
method [339].

Permutation test. When we have to test between-group differences, for one or 
more values per subject, we can use a (non-parametric) permutation test to infer 
whether the difference between the two values is statistically significant or not. 
To do so, we need to generate random groups by shuffling the labels of the 
groups. The metric differences between the two resulting random groups are then 
used to create a reference distribution for each metric in order to reject or retain 
the null hypothesis that there are no differences between the groups. To ensure 
that the reference distribution is appropriate we need to generate thousands of 
random groups. With 1.000 random groups the smallest possible p-value is 10-3, 
while with 100.000 random groups the smallest possible p-value decreases up to 
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10-5. A practical way is to start with a not too large number of random groups, for 
instance 1.000, and increase this number to a larger one if the p-value is small 
enough to be interesting. Because this calculation can be computationally 
demanding, sometimes parallel computing is needed. One way to avoid it is to 
use other techniques based on tail approximation, which obtain accurate p-value 
with a drastically reduced number of permutations [340]. A typical case in which 
we will need to use the permutation test is when we are willing to test between-
group differences in structural covariance analysis. In this case, we have the 
connectivity matrix at the group level and therefore the global connectivity 
measures are also at the group level. Testing differences between group level 
measures will require a permutation test.

Phase transition. The original meaning of the term phase transition is to be found 
in statistical physics, and especially in thermodynamics. When one defines the 
phase of matter as a state in which it has uniformly physical properties, a phase 
transition occurs when that matter undergoes a transformation between two 
states. To illustrate, water and ice are two phases (respectively liquid and solid), 
and the transition between both of them (i.e. the freezing process) is a phase 
transition. The term is nevertheless also used in a more general sense, to indicate 
any transition between two homogeneous and easy identifiable conditions of a 
system. For instance, when deleting nodes from a complex networks to simulate 
an attack to the system, the initial connected status and the final disconnected 
one are two phases, with a transition in between them [341].

Suppose one analyses the evolution of some metric describing the system as a 
function of an external parameter; in the previous example, the former can be the 
connectedness of the network, which is studied as a function of the number of 
removed links. Two types of transitions can then occur:
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• First-order phase transitions, which exhibit a discontinuity in the first 
derivative of the metric (solid red line of Fig. 10). This implies that the 
system has an abrupt reaction to the change in the external parameter.

• Second-order phase transitions are continuous in the first derivative, but 
usually exhibit discontinuity in a second derivative (dashed blue line of Fig. 
10). The response of the system is therefore smoother than in the previous 
case.

Figure 10. Example of two phase transitions, a first-order (red solid line) and a second-order one (dashed blue line).

Physiome is a multi-scale approach aiming to functionally synthesize models at 
different levels, and understand human physiology based on computational 
models [342]. Standardisation of models has been part of this effort, and an 
important number of models is now available in the physiome repository 
(https://models.physiomeproject.org/welcome).  

A flagship project has been the cardiovascular physiome, which aimed to use 
integrative multi-scale modelling and link the whole heart function with small scale 
systems and phenomena (e.g. ion channel mutations, ischaemic tissue,  drug 
toxicity, biochemical pathways), always with an eye towards providing tools for 
the clinician to investigate hypotheses and interpret experimental data. Within the 
physiome paradigm, the virtual physiological human (https://www.vph-
institute.org/), has been a long term initiative to embrace systems medicine at 
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organism level, towards integrating all information available for each patient, and 
generating computer models to predict patient’s health evolution.

Precision medicine. According to the HORIZON2020 Advisory Group (EU Health 
Ministers – December 2015), precision medicine is “a medical model using 
characterization of individual’s phenotypes and genotypes (e.g., molecular 
profiling, medical imaging, lifestyle data) for tailoring the right therapeutic strategy 
for the right person at the right time, and/or to determine the predisposition to 
disease and/or to deliver timely and targeted prevention.” Precision medicine is 
then an approach to patient care that promotes the idea of doctors selecting most 
adequate treatments for patients based on a genetic understanding of their 
disease. This idea does not literally mean to create the drugs or medical devices 
that are specific for a patient, but divide the individuals into clusters 
(subpopulations) that differ in their susceptibility to a particular disease, biology 
or prognosis of those diseases or response to specific treatments and select 
treatment based on that knowledge [343]. Preventive or therapeutic interventions 
can then be concentrated on those who will actually benefit and save expenses 
on unnecessary treatments and side effects in patients that do not. Older 
synonym for precision medicine was “personalized medicine”, which was often 
misinterpreted as implying that unique treatments can be designed for each 
individual. As a result, the term “precision medicine” was created [344].

Probabilistic Risk Analysis. Probabilistic risk analysis (PRA) is aiming at 
quantitative measures for evaluation the risk of system failures (e.g., supply of 
essential medicines within a healthcare system, availability of innovative drugs 
and active ingredients in the pharmaceutical sector, disruption of agri-food supply 
chains in natural disasters, security issues in the nuclear power industry), in which 
the common statistical analysis is very difficult or even impossible due to multiple 
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and disparate issues (e.g., non-existence of pertinent data, the system 
complexity, the uncertainty about consequences) [345].

The probabilistic risk is related with the probability distributions for the losses in 
a given time horizon, while PRA methods also includes event trees, fault trees, 
and Bayesian networks. The PRA approach typically considers: i) identification 
of failure scenarios; ii) computation of scenarios probabilities, by combination of 
events probabilities and the associated random variables distributions; iii) the 
evaluation of consequences, the extension and impacts of those scenarios. The 
data obtained in this way can then be used to feed a robust model with multiple 
goals, namely, by minimizing the expectance of system failure for a given budget 
(and/or for a given schedule), while verifying if the probabilistic measures for risk 
failure are satisfactory. 

Probabilistic risk analysis is also strongly connected with other concepts of 
interest, such as Model robustness, Model Verification and Validation, Parameter 
Sensitivity Analysis and Uncertainty Quantification. Difficulties are usually 
associated with the scenarios definition, the selection of random variables 
distributions and events probabilities, as well as sparsity and high-dimensionality.

Quantitative systems pharmacology. Quantitative systems pharmacology (QSP) 
or systems pharmacology modelling is a computational and mathematical 
modelling approach that simulates the mechanistic effects of drug effectiveness 
[346]. QSP combines pharmacokinetic/pharmacodynamic (PK/PD) modelling 
with systems biology and systems engineering [347, 348]. It integrates drug 
pharmacology, physiology, mathematics and biochemistry, and accounts for drug 
liberation, absorption, disposition, metabolism and excretion. QSP, which is a 
type of in silico modelling, typically makes use of differential equations to model 
the dynamics of the drug interacting with the biological system. More recently, 
QSP involves genomic, transcriptomic, metabolomic and proteomic levels, as 
well as regulatory and epigenomic levels. QSP is increasingly being used in 
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pharmaceutical research and development to help guide the discovery and 
development of new treatments and therapies, and to extrapolate animal data to 
humans [349, 350, 351]. This is in line with recent directions in stratified medicine 
or precision medicine, by which model parameters can be tuned to simulate 
specific biomedical type. The advancement in big data and data science is 
gradually forming an integral part of QSP, complementing its traditional 
mechanistic modelling.

Random Forest. In data mining, Random Forests (RFs) are classification 
algorithms based on combining multiple Decision Trees (DTs) models. The 
underlying concept is that an ensemble of models, each one independently 
trained on a subset of the data and each one casting a vote about a particular 
instance, could yield a better result than a single model, especially in problems 
are characterized by a large number of variables, each one of them encoding 
very little information. Following this idea, Random Forests are created by 
merging multiple DT predictors, each one trained using a different subset of the 
initial data [352]. Each tree in random forest is grown as follows: i) sample with 
replacement a given number of cases from the training set at random. This 
sample will be the training set for growing the tree; ii) given  input variables, 𝑀

randomly select  of them at each node, and choose the best one to split 𝑚≪𝑀

the node; iii) grow the tree with no pruning. Given one new instance, the final 
classification corresponds to the class voted by the majority of the trees. While 
there is no strict rule about the optimal number of trees to be grown, studies 
suggest that little is gained by going over 1.000 trees [353].

Random forests have three significant advantages: first, they do not suffer from 
overfitting, and can thus be use in small data sets. Second, their computational 
cost is reduced, and are very prone to parallelization (as each tree can be created 
in an independent process). Finally, they have been shown to outperform most 
known algorithms, in terms of accuracy [354]. On the negative side, it is worth 
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noting that the number of trees in the model must be selected by the researcher, 
and that not clear rules are available to guide this process.

Random graphs. Random graphs are graphs, or networks, that are artificially 
constructed by creating links between nodes according to a given probability 
distribution [355, 356]. As such, they do not correspond to any real-world system; 
but they instead provide a tool for answering specific questions about how some 
properties may appear. Due to the lack of any pre-defined structure, except for 
those naturally arising from the defined probability distribution, random graphs 
are well suited to be used as null models.

Scale-free networks. A scale-free network is any complex network whose degree 
distribution approximatively follows a power law; in other words, the fraction of 
nodes with degree  goes as , with  being a parameter usually in the 𝑘 𝑃(𝑘) ≈ 𝑘―𝛾 𝛾

range (2, 3). Many real-world networks, including biological ones [357, 358], have 
been found to be scale-free to some degree [359, 360], although no consensus 
still exists on the best way of statistically test such property [361].

Scale-free networks are of relevance for different reasons.

First of all, the degree distribution implies that most nodes have very few 
connections, while a (statistically significant) high number of them concentrate 
the majority of the links; these latter ones are thus more important for the 
functioning of the network, or more central, and are usually called “hub”.

Secondly, the structure induced by scale-freeness implies a great resilience 
against random disruptions; note that, if a node is deleted at random, there is a 
high probability for that node to be secondary and weakly connected. On the other 
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hand, a targeted attack can do much damage, as it can target a node of very high 
centrality [362, 363].

Finally, several models have been proposed to explain the appearance of scale-
free networks [364, 365, 366, 367]; and, more generally, the presence of such 
structure can point towards the existence of some generative processes.

Simulated annealing. Simulated annealing (SA) is a form of optimization that is 
used to approximate global optimization in a large search space. This method is 
used in discrete space, where finding an approximate global optimum is more 
important than finding a precise local optimum in a fixed amount of time. In these 
situations, simulated annealing is often preferable to methods such as gradient 
descent. It is especially useful in finding global optima when large numbers of 
local optima are present.  Simulated annealing uses the objective function of an 
optimization problem instead of the energy of material. Implementation of SA 
consists of hill-climbing and picking a random move, instead of the best move. If 
the selected move improves the solution, it is accepted, and when not, it moves 
with probability less than 1. The value of probability decreases exponentially with 
the amount of how much the solution is worsened [368, 369]. Beyond general 
optimisation problems (see for instance [370, 371, 372]), SA has extensively 
been used for segmenting medical images [373, 374].

Small-world network. The theory of small-world networks [375] is based on the 
observation of biologic or complex systems that can be represented using 
graphical models. The specific graph shows especial characteristics, such as 
having a high clustering of its elements, and a very fast association between any 
two different nodes that can be inferred by following the shortest path between 
the nodes through the graph connections.
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The formulation of small-world networks was inspired by the idea that the “degree 
of separation” or distance between two different (unfamiliar) persons on the Earth 
is about five [376]. Not only social networks have been observed to follow this 
pattern, network of collaborators, complex systems and brain networks also 
follow this interesting rule.

A small-world network can be also explained as the transition from random or 
chaotic systems to highly regular or structured ones. For example, in a regular 
lattice network, where the nodes only have connections to the closest or adjacent 
nodes, it can be observed that by disconnecting and randomly reconnecting the 
nodes, the average distance between any two nodes in the network rapidly 
decays while maintaining the local network of closest nodes only decay slightly 
in density (clustering coefficient). In neural networks this property of small-
worldness can be seen as critical to maintain a fast integration among distant 
neural population in order to process information efficiently, while the different 
tokens of information are locally processed in highly dense local networks.

Figure 11. Example of the creation of a small-world network.

Smoothed-particle hydrodynamics. Smoothed-particle hydrodynamics (SPH) is a 
computational method that is used for simulating the mechanics of continuum 
media, such as solid mechanics and fluid flows [377].  Many fields of research 
have employed SPH method, such as engineering, astrophysics, ballistics, 
volcanology, and oceanography [378, 379, 380]. It is a meshfree Lagrangian 
method, meaning there is no division of domain of interest in the form of mesh 
(see Finite Element Method and Finite Volume Method), but rather the 
coordinates move with the fluid. In such way, the resolution of the method can 
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easily be adjusted with respect to variables such as density. Here, the 
computational domain is discretized by a finite set of interpolating points 
(particles) with invariant coordinates in the material frame. Each SPH particle 
represents a finite mass of the discretized continuum and carries the information 
about all physical variables which are evaluated at their positions. Interpolating 
(smoothing) function and its derivatives at surrounding particles are used to 
evaluate the function values and their derivatives at a specific particle [381]. SPH 
has been used, for instance, to model therapeutic solutions aimed at helping 
heart muscle to regenerate after an injury [382].

Solid-fluid interaction. Solid-fluid interaction is a numerical approach that is used 
to model phenomena that involve both the surrounding fluid and immersed solid 
objects. Using this approach, both domains are simulated concurrently, and they 
form a coupled mechanical system. The fluid is acting on the solid object via 
external forces and causes the motion and deformation of the deformable solid 
and vice versa – the solid is opposing the deformation and influence of fluid and 
this way alters the fluid flow. Solid-fluid interaction techniques have been applied, 
for instance, in modelling the deployment of stent within stenotic artery with 
deformable arterial wall [383]; in simulating the behaviour of deformable cells 
within a fluid flow [384, 385]; and in providing insight into the benefits of different 
treatment alternatives in a case of type B aortic dissection [386].

Statistical bioinformatics. Application of statistical techniques to large sets of 
biomedical data – mainly genomics data, but recently this has evolved to include 
any type of -omics data. For more information, refer to [387, 388, 389, 390].

Statistical Networks. One of the properties of a system is that it consists of 
interacting components at different levels. Creating a corresponding network may 
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be based on biology (see Biological Networks) or may be based on analytical 
arguments, or both. Statistical epistasis networks belong among the simplest 
examples of such networks, in which nodes refer to units of analysis and edges 
are formed via a notion of statistical significance. They have become popular 
tools in genome-wide association interaction studies to highlight higher-order 
interactions in typically underpowered studies [391]. In general, the major 
challenge with statistical networks is to assess and minimize statistical artefacts 
that may hamper network-derived biological conclusion-drawing [392].

Support Vector Machine. Binary linear classifiers based on the identification of 
hyperplanes in the feature space, dividing the training instances in two groups 
according to the training label. The model is trained by firstly constructing a 
feature space, i.e. a hyper-space defined by the features available in the data 
set, which must always be numerical. Records are mapped into this space, and 
the best linear separation between them is then calculated. The best separation 
is achieved by the hyperplane that has the largest distance to the nearest training-
data point of any class, as this minimises the error. Modified version of SVMs 
have been developed to tackle different problems, including regression problems 
[393], or the use of different kernels (i.e. distance functions) to obtain non-linear 
models [394]. Among SVM’s disadvantages are a high computational cost, and 
the complexity of dealing with classifications with multiple labels. For more 
details, refer to [395, 396].

Surrogate model. Surrogate model is an engineering method that is used when 
an outcome of interest cannot be easily directly measured, and instead, a model 
of the outcome is used. In many real-world problems, one simulation can take 
from minutes, to hours and even days to finish the calculation. Therefore, 
sometimes design optimization, sensitivity analysis and what-if analysis are 
impossible to investigate, since that would mean running thousands or even 
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millions of simulations. Surrogate models, also known as metamodels, are 
compact, scalable analytic models that approximate the multivariate input/output 
behaviour of complex systems, based on only a limited set of computationally 
expensive simulations. In such way, surrogate models actually mimic the 
complex behaviour of the simulation model, and are applied in design 
automation, parametric studies, design space exploration, optimization and 
sensitivity analysis. Other synonyms for surrogate models are response surface 
models (RSM), emulators, auxiliary models, repro-models, metamodels, etc. 
[397].

Systems biology. Systems biology is the field devoted to the computational and 
mathematical modelling of complex biological systems [398, 399, 400]. It focuses 
on the relationships between the components of a biological system, and how 
these relationships give rise to its global function and behaviour. This is opposed 
to a reductionist paradigm.

Systems bioinformatics. A new approach to the analysis of biomedical data that 
is based on the application of a systems biology perspective. This includes, on 
one hand, a top-down view, with bioinformatics methods being used to extract 
and analyse information from “omics” data generated through high-throughput 
techniques [401], eventually integrating omics data coming from different sources 
[402, 403, 404]. On the other hand, this is complemented with a bottom-up 
approach, where information from molecular cells and tissues, alongside 
mathematical models, are used to elucidate the function and dynamic behaviour 
of cells, organs and organisms.
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Systems dynamics. Systems dynamics or dynamical systems is a mathematical 
method or modelling approach for understanding the behaviour of complex 
systems with their states evolving over time. This is used in in silico modelling of 
biomedical systems. For instance, biochemical reactions (using mass action law), 
intracellular signalling pathways, activity of excitable/nerve cells and their 
networks, biological rhythms, cancer development, and population dynamics can 
be described by dynamical systems [405, 406, 407, 408, 409]. 

A system often consists of a set of interacting elements or components that forms 
a larger component or entity. Understanding the latter’s behaviour is often not 
immediately clear just based on the elements or building blocks, but through the 
analysis of the interactions leading to “emergent” dynamical behaviour. The 
analysis could be performed analytically (especially for simpler systems) or 
computationally using various numerical methods. Often, the stability of the 
system is also evaluated analytically or computationally either locally e.g. around 
some steady state, or globally. Software are often used for numerical 
computation. The popular ones include XPPAUT (C programming based) [410] 
and MATCONT (MATLAB programming based) [411]. 

The elements or interactions can be linear or nonlinear. The interactions can be 
instantaneous or time-delayed. The system can be deterministic or stochastic 
(i.e. in the presence of noise). Supposed a system's state variable is described 
by a vector , and the environment of system is described by parameters , the 𝑥 𝑎

evolution mechanism of dynamical systems can be continuous (behaving 
continuously over time) and described by a group of differential equations, 

𝑑𝑥
𝑑𝑡 = 𝑓(𝑥, 𝑎,𝑡),

or discrete (behaving over discrete time points) and described by difference 
equations, 

𝑥(𝑡 + 1) = 𝑓[𝑥(𝑡),𝑎],
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or described by symbolic dynamics i.e. mathematical function mappings [409]

𝑓:𝑥(𝑡)→𝑥(𝑡 + 1).

Often but not necessary, nonlinearity in the system can lead to highly non-trivial 
emergent dynamics. For instance, varying some parameter  around its critical 
value can dramatically change the behaviour of the system. This is termed 
bifurcation [412] or phase transition, and is linked to Catastrophe Theory [413]. 
Some other topics related to systems dynamics or dynamical systems theory 
include Chaos Theory [409].  

Systems Engineering. Systems Engineering is a multi/transdisciplinary field 
devoted to the engineering and engineering management of very large and 
complex socio-technical systems. It addresses all the elements within a system, 
their individual properties and inter-relations are considered and integrated in a 
holistic approach, through a combination of relationships to jointly perform a 
useful function as a whole. Systems Engineering combines Engineering with 
Management, Finance, Economics, Pure/Exact and Social Sciences, in a way to 
adequately design, develop, and implement the large and complex systems that 
are so important nowadays. It is typically used to manage the inherent complexity 
of societal problems, e.g., either in spacecraft design or in combination with 
pharmacokinetic/pharmacodynamic (PK/PD) modelling and Systems Biology 
[347, 348]. In this way, the Systems Engineering approaches are delimited within 
the Systems Theory framework [414].

Systems medicine. Systems medicine is an interdisciplinary field of study that 
looks at the human body as a system, composed of interacting parts, and further 
integrated into an environment. It considers that these complex relationships exist 
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on multiple levels, and that they have to be understood in light of a patient’s 
genomics, behaviour and environment. As such, it integrates contributions from 
multiple research fields, including medicine, systems biology, statistics, modelling 
and simulation, and data science. The earliest uses of the term systems medicine 
appeared in 1992, in two articles independently published by B. J. Zeng [3] and 
T. Kamada [4].

As the name suggests, systems medicine represents the convergence of two 
main fields:

• Systems biology, the field of study that focuses on complex interactions 
within biological systems, using a holistic approach.

• Medicine, as it presents a clear focus towards medical research and 
medical practice. As such, systems medicine aims at having tangible 
benefits for the patients, with the identification of those elements that are 
critical for influencing the course of the system (i.e. medical conditions).

Among its objectives, it is worth highlighting:

• Systems medicine is not systems biology just in one species, but similar 
to the distinction between “medicine” and “biology” systems medicine 
needs to have to objective to achieve patient benefit, by either better or 
earlier diagnosis and therapy.

• Systems medicine questions and replaces the current concept of 
medicine, which is largely built on organ-based subfields and symptom-
based disease definitions, towards a holistic-defining diseases at a 
mechanistic level.

• Systems medicine defines (diagnostic and therapeutic) targets not any 
longer as single molecules but rather perturbed networks, which form 
subgraphs of the interactome.

• At the application side, systems medicine will lead to precision diagnostics 
and therapeutics.
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• Some therapeutics/drugs will not need to be developed de novo but 
repurposed/repositioned.

• Use multilayer diagnostic tools.
• Thereby systems medicine will enable predictive, personalized, 

preventative, participatory medicine.
• By increasing medical precision and efficacy, systems medicine ideally 

addresses the financial pressures on all health care providers and enables 
the ultimate move from an input medicine to an output medicine (see 
recent World Economic Forum Davos).

System of Systems. Systems of Systems can be represented as large scale, 
complex, distributed systems. System of Systems concept is described in terms 
of “Maier’s criteria” [415]: operational and managerial independence, distribution, 
emergent behaviour as a result of component behaviour and evolutionary 
development. System of Systems principles can be applied in integrating health 
management, medical diagnosis and medical support systems [416].

Standards. The word “standard” has several different definitions. Whereas in 
general metrology, a standard is a reference that is used to calibrate 
measurements, in the systems biology field, standards have been developed 
through standardization initiatives (e.g. ISO, COMBINE [417]) to format and 
describe data and models, for exchange and understanding between scientific 
communities. Three types of standards have been considered [418]:  standard 
formats for representing data and models; standard metadata for describing 
types of data and models; controlled vocabularies and ontologies to provide a 
common vocabulary.
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Structural covariance networks. A technique used to reconstruct complex 
networks representations of brain cortical regions. The network is defined such 
that nodes represent brain regions, and links the Pearson’s correlation of cortical 
thickness or volume between pairs of regions, as yielded by magnetic resonance 
data (MRI) [419, 420]. Structural covariance between regions can be used to 
construct the so-called structural covariance networks. Several studies have 
been conducted in which structural covariance networks have been analysed in 
healthy subjects [421, 422], and in groups of patients with disorders such as 
autism, attention deficit hyperactivity disorder, schizophrenia, or Alzheimer's 
disease [423, 424, 425, 426], or to assess the differences between gifted children 
and controls [427]. Since the SCN is at the group level, (structural) connectivity 
parameters are also at the group level and a permutation test will be needed to 
infer differences between measures. See also morphometric similarity networks.

Time-evolving networks. One major problem that was found while studying time-
evolving systems through complex networks was that edges may not 
continuously be active. To illustrate, let us consider the network of contacts 
between inpatients of an hospital, which may be used to model the propagation 
of infectious diseases. Firstly, two people may be connected by a link even if they 
have been in the same room for a short time window, thus the probability of 
contagious should not be binarized. Secondly, the sequence of contacts is also 
important: if a person met patient A and later patient B, a disease cannot spread 
from B to A. The solution was the development of the concept of time-evolving, 
or temporal, networks, in which a collection of networks represent the status of 
the system as it evolves through time [428, 429].

Time scale separation. Dynamic mathematical models can be simplified using 
time scale separation approach: if part of a system operates sufficiently fast 
compared to the rest of the system, it may be assumed to have reached a steady-
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state [430]. This allows the elimination of fastest components from the model, 
lumping them with slower components as they determine the speed of systems 
reaction. This approach can be very efficient in multiscale modelling where 
dynamics of very different processes are merged. Time scale separation is 
applied for modelling of vector-borne diseases taking where human host 
epidemiology is much slower than the transmission of vector from human to 
human by mosquitos: only human time scale is investigated assuming that 
human-human transmission happens instantly [431]. Time scale separation can 
be used to simplify modelling of biochemical processes at cellular physiology 
level [432].

Variation partitioning. Also called “commonality analysis”, a technique aimed at 
quantifying the part of the observed variation that is the shared consequence of 
two (or more) explanatory variables. It was initially introduced in 1992 by D. P. 
Borcard and co-authors in ecology [433], and has since seen some limited 
applications in medicine [434, 435].

Virtual physiological human. See physiome.
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