5 research outputs found

    Biochemical and genetic characterization of a novel enzyme of pentitol metabolism: D-arabitol-phosphate dehydrogenase.

    No full text
    An enzyme with a specificity that has not been described previously, D-arabitol-phosphate dehydrogenase (APDH), has been purified from cell lysate of Enterococcus avium. SDS/PAGE indicated that the enzyme had a molecular mass of 41+/-2 kDa, whereas a molecular mass of 160+/-5 kDa was observed under non-denaturing conditions, implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have a narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into xylulose 5-phosphate and ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD(+) and NADP(+) were accepted as cofactors. Based on the partial protein sequences, the APDH gene was cloned. Homology comparisons place APDH within the medium-range dehydrogenase family. Unlike most members of this family, APDH requires Mn(2+) but no Zn(2+) for enzymic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system. Both biochemical evidence and protein sequence homology comparisons indicate that similar enzymes are widespread among the Gram-positive bacteria. Their apparent biological role is to participate in arabitol catabolism via the 'arabitol phosphate route', similar to the ribitol and xylitol catabolic routes described previously

    Biochemical characterization of Aspergillus awamori exoinulinase: substrate binding characteristics and regioselectivity of hydrolysis

    Full text link
    1H-NMR analysis was applied to investigate the hydrolytic activity of Aspergillus awamori inulinase. The obtained NMR signals and deduced metabolite pattern revealed that the enzyme cleaves off only fructose from inulin and does not possess transglycosylating activity. Kinetics for the enzyme hydrolysis of inulooligosaccharides with different degree of polymerization (d.p.) were recorded. The enzyme hydrolyzed both beta2,1- as well as beta2,6-fructosyl linkages in fructooligosaccharides. From the k(cat)/K(m) ratios obtained with inulooligosaccharides with d.p. from 2 to 7, we deduce that the catalytic site of the inulinase contains at least five fructosyl-binding sites and can be classified as exo-acting enzyme. Product analysis of inulopentaose and inulohexaose hydrolysis by the Aspergillus inulinase provided no evidence for a possible multiple-attack mode of action, suggesting that the enzyme acts exclusively as an exoinulinase

    α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima

    No full text
    Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG‡0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG‡0 = 1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG‡F − ΔΔG‡H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower

    The method of integrated kinetics and its applicability to the exo-glycosidase-catalyzed hydrolyses of p-nitrophenyl glycosides

    No full text
    In the present work we suggest an efficient method, using the whole time course of the reaction, whereby parameters kcat, Km and product KI for the hydrolysis of a p-nitrophenyl glycoside by an exo-acting glycoside hydrolase can be estimated in a single experiment. Its applicability was demonstrated for three retaining exo-glycoside hydrolases, β-xylosidase from Aspergillus awamori, β-galactosidase from Penicillium sp. and α-galactosidase from Thermotoga maritima (TmGalA). During the analysis of the reaction course catalyzed by the TmGalA enzyme we had observed that a non-enzymatic process, mutarotation of the liberated α-d-galactose, affected the reaction significantly

    Catalytic Mechanism of Human α-Galactosidase*

    No full text
    The enzyme α-galactosidase (α-GAL, also known as α-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of α-galactosides in the lysosome. Defects in human α-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of α-galactosylated substrates in the tissues. α-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human α-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-α-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a 1S3 skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on α-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones
    corecore