10 research outputs found

    A bayesian approach to wireless location problems

    Get PDF
    Several approaches for indoor location estimation in wireless networks are proposed. We explore non-hierarchical and hierarchical Bayesian graphical models that use prior knowledge about physics of signal propagation, as well as different modifications of Bayesian bivariate spline models. The hierarchical Bayesian model that incorporates information about locations of access points achieves accuracy that is similar to other published models and algorithms, but by using prior knowledge, this model drastically reduces the requirement for training data when compared to existing approaches. Proposed Bayesian bivariate spline models for location surpass predictive accuracy of existing methods. It has been shown that different versions of this model, in combination with sampling/importance resampling and particle filter algorithms, are suitable for the real-time estimation and tracking of moving objects. It has been demonstrated that plug-in versions of the bivariate Bayesian spline model perform as good as the full Bayesian version. A combination of two Bayesian models to reduce the maximum predictive error is proposed. Models presented in this work utilize MCMC simulations in directed acyclic graphs (DAGs) to solve ill-posed problem of location estimation in wireless networks using only received signal strengths. Similar approaches may be applied to other ill-posed problems

    rEHR: An R package for manipulating and analysing Electronic Health Record data

    Get PDF
    Research with structured Electronic Health Records (EHRs) is expanding as data becomes more accessible; analytic methods advance; and the scientific validity of such studies is increasingly accepted. However, data science methodology to enable the rapid searching/extraction, cleaning and analysis of these large, often complex, datasets is less well developed. In addition, commonly used software is inadequate, resulting in bottlenecks in research workflows and in obstacles to increased transparency and reproducibility of the research. Preparing a research-ready dataset from EHRs is a complex and time consuming task requiring substantial data science skills, even for simple designs. In addition, certain aspects of the workflow are computationally intensive, for example extraction of longitudinal data and matching controls to a large cohort, which may take days or even weeks to run using standard software. The rEHR package simplifies and accelerates the process of extracting ready-for-analysis datasets from EHR databases. It has a simple import function to a database backend that greatly accelerates data access times. A set of generic query functions allow users to extract data efficiently without needing detailed knowledge of SQL queries. Longitudinal data extractions can also be made in a single command, making use of parallel processing. The package also contains functions for cutting data by time-varying covariates, matching controls to cases, unit conversion and construction of clinical code lists. There are also functions to synthesise dummy EHR. The package has been tested with one for the largest primary care EHRs, the Clinical Practice Research Datalink (CPRD), but allows for a common interface to other EHRs. This simplified and accelerated work flow for EHR data extraction results in simpler, cleaner scripts that are more easily debugged, shared and reproduced

    Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays

    No full text
    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform.

    Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays*

    No full text
    We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform
    corecore