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ABSTRACT

A BAYESIAN APPROACH TO WIRELESS LOCATION PROBLEMS

by
Ivan Zurich

Several approaches for indoor location estimation in wireless networks are proposed.

We explore non-hierarchical and hierarchical Bayesian graphical models that use prior

knowledge about physics of signal propagation, as well as different modifications of

Bayesian bivariate spline models. The hierarchical Bayesian model that incorporates

information about locations of access points achieves accuracy that is similar to other

published models and algorithms, but by using prior knowledge, this model drastically

reduces the requirement for training data when compared to existing approaches.

Proposed Bayesian bivariate spline models for location surpass predictive accuracy

of existing methods. It has been shown that different versions of this model, in

combination with sampling/importance resembling and particle filter algorithms, are

suitable for the real-time estimation and tracking of moving objects. It has been

demonstrated that "plug-in" versions of the bivariate Bayesian spline model perform

as good as the full Bayesian version. A combination of two Bayesian models to reduce

the maximum predictive error is proposed. Models presented in this work utilize

MCMC simulations in directed acyclic graphs (DAGs) to solve ill-used problem of

location estimation in wireless networks using only received signal strengths. Similar

approaches may be applied to other ill-used problems.
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CHAPTER 1

INTRODUCTION

1.1 Mutivatiun

The growth of wireless networking has generated commercial and research interest in

statistical methods to track people and things. Inside stores, hospitals, warehouses,

and factories, where Global Positioning System devices generally do not work, Indoor

Positioning Systems (PS) aim to provide location estimates for wireless devices

such as laptop computers, handheld devices, and electronic badges. The prolif-

eration of "Wi-Ci" (IEEE 802.11b) wireless internet access in cafes, college campuses,

airports, hotels, and homes has generated particular interest in PS that utilize

physical attributes of Wi-Ci signals. Typical applications include tracking equipment

and personnel in hospitals, providing location-specific information in supermarkets,

museums, and libraries, and location-based access control.

In a standard Wi-Ci setup, one or more access points serve end-users. In what

follows we focus on networks with multiple access points (typical of networks in office

buildings or large public spaces). Wi-Ci location estimation can employ one or more

of several physical attributes of the medium. Typical features include received signal

strength (RSS) from the access points, the angle of arrival of the signal, and the

time difference of arrival. Among these, RSS is the only feature that reasonably

priced hardware can currently measure. There exists a substantial literature on

using RSS for location estimation in wireless networks [1, 15, 32]. Related websites

include wow. . ekahau . com, wow. . bluesoft-inc . corn, and wow . newburynetworks . corn.

In a laboratory setting, RSS decays linearly with log distance and a simple trian-

gulation using RSS from three access points could uniquely identify a location in a

two-dimensional space.

1
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In practice, physical characteristics of a building such as walls, elevators, and

furniture, as well as human activity add significant noise to RSS measurements.

Consequently statistical approaches to location estimation prevail.

The standard approach uses supervised learning techniques. The training data

comprise vectors of signal strengths, one for each of a collection of known locations.

The dimension of each vector equals the number of access points. The corresponding

location could be one-dimensional (e.g., location on a long airport corridor), two-

dimensional (e.g., location on one floor of a museum), or three-dimensional (e.g.

location within a multi-storey office building). Collection of the location data is

labor intensive requiring physical distance measurements with respect to a reference

object such as a wall. The model building phase then learns a predictive model

that maps signal strength vectors to locations. Researchers have applied many

supervised learning methods to this problem including nearest neighbor methods,

support vector machines, and assorted probabilistic techniques. In this work we

explore the use of hierarchical Bayesian graphical models [9, 20, 41] for wireless

location. Our objective is to use the hierarchical Bayesian framework to incorporate

important prior information and the graphical model framework to facilitate the

construction of realistically complex models.

Gathering extensive training data and the requisite physical measures of location

("profiling") involves a steep upfront cost and deployment effort [37] . Curthermore,

even in normal office environments, changing environmental, building, and occupancy

conditions can affect signal propagation and require repeated data gathering to maintain

predictive accuracy [1] . Consequently, minimizing the number of training observations

needed to adequately profile a particular site is an important objective. Similarly

we seek to minimize data requirements concerning internal wall materials, flooring,

occupancy, etc.
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Two types of location estimation systems exist. In a client-based deployment,

the client measures the signal strengths as seen by it from various access points.

The client uses this information to locate itself. The cost to an enterprise for such

deployments is the cost of profiling the site, building the model, and maintaining the

model. In an infrastructure-based deployment, the administrator deploys so-called

sniffing devices that monitor the signal strength from clients. The cost to enterprises

in such deployments is the typically modest cost of deploying the necessary hardware

and software, and the time and effort to build and maintain the model (if it is not

completely automated) .

Our key finding is that a hierarchical Bayesian approach, incorporating prior

physical knowledge about the nature of Wi-Ci signals, can provide accurate location

estimates without ciny location information in the training data. In the context of

an infrastructure-based deployment, our proposed model can thus eliminate profiling

entirely.

Major part of this work focuses on static location estimation. We investigate

different models that estimate location at a particular time point.

Chapter 5 focuses on online location methods and on tracking of moving objects.

It utilizes results from chapter 4 in combination with particle algorithms.

1.2 Backgruund

1.2.1 Related Wurk

Location estimation techniques in wireless networks can be broadly classified based

on the methods used to build models and methods used to search the models in the

online phase. Cor building models, most techniques profile the entire site and collect

one or more signal strength samples from all visible access points at each sample

point. Each point is mapped to either a signal strength vector [1, 15, 27, 36] or

a signal strength probability distribution [2, 32, 42, 46] . Such profiling techniques
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require considerable investment in data gathering. Alternatively, a parametric model

that uses signal propagation physics and calculates signal degradation based on a

detailed map of the building, the walls, obstructions and their construction material,

has been proposed [1] . Obtaining detailed maps of the building and its changes over

time is, however, a hurdle that needs to be overcome for the use of this method.

In [37], the authors emphasize a client-based location model and raise interesting

privacy issues in location-based services. We expect that in enterprises, based on

current privacy policies used for other electronic transmissions like email and web-

access, the preference would be for an infrastructure-based solution. If privacy is

desired, in our case, on entering a site a client device could download the model for

that site and use it to determine its own location. As mentioned in [37], client-based

approaches must also be concerned about the power requirements on the client devices

that are inherently power constrained. Sniffing for clients to provide an infrastructures-

bashed system has been proposed [5, 44, 45] .

Custom sensors have been used for location estimation in other interesting

ways [29, 44, 45] . In [44] and similar systems, infrared (IR) wireless technology

is used; IR technology has limited range and hence has not become very popular. In

[29], a decentralized (client-based) approach using time difference of arrival between

ultrasound and RF signals from custom sensors is used for location estimation. The

system in [45] uses expensive custom RF-based hardware for location estimation,

and an approach based on time difference of signal arrival, which is inherently more

expensive to measure. In contrast, our approach is easier to bootstrap, is based

on RSS and can be built with off-the-shelf components. Recent advances in sensor

technology [26] and projected decreases in the manufacturing cost allow us to provide

a cost-effective solution in our system.



1.2.2 Radiu Frequenci Signal Propagatiun in Wireless Ethernet

In [15], Ladd and coworkers provide an introduction to the behavior of Wi-Fi signals

and here we present a brief summary. The IEEE 802.11b High-Rate standard uses

radio frequencies in the 2.4 GHz band. Wi-Ci adaptors use spread-spectrum technology

that spreads the signal over several frequencies. In this way, interference on a

single frequency does not entirely block the signal. The signal itself propagates in a

complex manner [22] . Reflection, absorption, and diffraction occur when the signal's

waves encounter opaque obstacles resulting in essentially random variations of signal

strength. A variety of other factors such as noise, interference from other sources,

and interference between channels also affect the signal. The resonant frequency of

water happens to be 2.4 GHz so people also absorb the radio waves and impact the

signal strength. Other common devices using the 2.4 GHz band include microwave

ovens, BlueTooth devices, and 2.4 GHz cordless phones.

The consequence of all this is that received signal strength varies over time at

a single location and varies across different locations. However, signal profiles corre-

sponding to spatially adjacent locations are similar as the various external variables

remain approximately the same over short distances. Furthermore, the local average

of the signal strength varies slowly over time and the signal strength decays approxi-

mately in proportion to log distance [25] .

Several units of measurement are used to represent signal strength in 802.11,

we will use here only dB ("dee-bee-em" or "dee-bee militates"). The "dB" is a

logarithmic measurement connected to ma (militates) as follows:

Cor convenience, we will multiply all signal strength measurements by —1, i.e.

instead of "-50 dB", we use "50" value of RSS. We will denote it as "50 -dB."



CHAPTER 2

INTRODUCTION TO BAYESIAN AND GRAPHICAL METHODS

2.1 The Baiesian Appruach

There are two major philosophies in modern Statistics. The classical frequenciet

approach assumes that probability of events refer to limiting frequencies. Under

frequentist paradigm parameters are assumed to be fixed unknown constants, therefore

no probability statements can be made about them.

In the Baiesian approach, on the other hand, probability of the event charac-

terizes degree of belief, and there is no fundamental difference between parameters

and observations, both are treated as random variables. Statistical information about

those variables is summarized in the form of distributions, and the aim of the Baiesian

analysis is to get posterior distributions of the parameters of interest.

Bayesian inference is carried through the following steps:

1. Choose the prior distribution's) f 'θ) of the parameter's) of interest Θ. Prior

distribution reflects our prior knowledge of the parameter's).

2. Set up a full probcibilistic model, a joint probability distribution of all

quantities 'observable, i.e. data, and unobservable, i.e. parameters): f'd, Θ). Joint

density may be expressed as a product of the prior distribution f 'Θ) and the likelihood

f '1 19) :

3. Having observed data D, we update our belief about Θ using the Babes rule:

6
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Very often the calculation of the normalized value f 'D) is infeasible, that leaves

us with the unnοrmalized posterior density:

2.2 The Gibbs Sampler

Let's assume that our aim is to draw a sample from the joint density π(x), x Ε Rn

Let π(xi I x_ i ) denote the conditional distribution of x i given all other variables:

According to [10], Gibbs sampler algorithm is carried on in the following way:

2.3 Graphical Mudels and Cunditional Independence

A graphiccil model is a multivariate statistical model embodying a set of conditional

independence relationships. A graph displays the independence relationships.
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Figure 2.1 This directed acyclic graph 'DAG) represents connditional independence
of X and Y given Z

The vertices of the graph correspond to random variables and the edges encode

the relationships. To date, most graphical models research has focused on acyclic

digraphs, chordal undirected graphs, and chain graphs that allow both directed and

undirected edges, but have no partially directed cycles [17] .

Here we focus on acyclic digraphs 'ADGs) with both continuous and categorical

random variables. In an ADG, cill the edges are directed and the graph represents

them with arrows 'see Figure 2.1) .

A directed graph is acyclic if it contains no cycles. Each vertex in the graph

corresponds to a random variable Χv , ν Ε V taking values in a sample space 'v .

To simplify notation, we use v in place of Χv in what follows. In an ADG, the

parents of a vertex v, pa'v), are those vertices from which vertices point into v. The

descendcincs of a vertex v are the vertices which are reachable from v along a directed

path. A vertex w is a child of v if there is an edge from v to w. The parents of v

are taken to the be the only direct influences on v, so that v is independent of its

non-descendants given its parents. This property implies a factorization of the joint



Cigure 2.2 shows a simple example. This directed graph represent the assumption

that Χ and Χα are conditionally independent given Χβ . The joint density of the

three variables factors accordingly,

Cor graphical models where all the variables are discrete, Spiegelhalter and

Lauritzen presented a Bayesian analysis and showed how independent Dirichlet prior

distributions can be updated locally to form posterior distributions as data arrive

[39] . Heckerman and coworkers provided corresponding closed-form expressions for

complete-data likelihoods and posterior model probabilities [24] . Madigan and York

described corresponding Bayesian model averaging procedures [20] . In the Bayesian

framework, model parameters are random variables and appear as vertices in the

graph.

When some variables are discrete and others continuous, or when some of the

variables are latent or have missing values, a closed-form Bayesian analysis generally

does not exist. Analysis then requires either analytic approximations of some kind

or simulation methods. Here we consider a Markov chain Monte Carlo 'MCMC)

simulation method.
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As follows from the previous section, the Gibbs sampler starts with some initial

values for each unknown quantity 'that is, model parameters, missing values, and

latent variables), and then cycles through the graph simulating each variable v in

turn from its conditional probability distribution, given all the other quantities,

denoted V \v, fixed at their current values 'known as the "full conditional") . The

simulated v replaces the old value and the simulation shifts to the next quantity.

After sufficient iterations of the procedure one assumes that the Markov chain has

reached its stationary distribution, and then future simulated values for vertices of

interest are monitored. Inferences concerning unknown quantities are then based

on data analytic summaries of these monitored values, such as empirical medians

and 95% intervals. Some delicate issues do arise with the Gibbs sampler such as

assessment of convergence, sampling routines, etc. Gilks and coworkers provide a full

discussion [11].

The crucial connection between directed graphical models and Gibbs sampling

lies in expression '2.6). The full conditional distribution for any vertex v is equal to:

i.e., a prior term and a set of likelihood terms, one for each child of v. Thus, when

sampling from the full conditional for v, we need only consider vertices which are

parents, children, or parents of children of v, and we can perform local computations.

The BUGS language and software 'www . mrc-bsu . cam. ac . uk/bugs)  implements a

version of the Gibbs sampler for Bayesian graphical models [40] . As follows from

the formula for the full conditional distribution for vertex v, a DAG model usually

gives us the full conditional distribution of each node up to proportionality constant.

Fortunately, methods of sampling from full conditional distributions used in BUGS
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'WinBUGS) do not require evaluation of proportionality constants. We used WinBUGS

for the experiments we report below.

2.4 Semiparametric Regressiun Mudels

There are two types of regression models: parametric and nonparametric. Parametric

models assume a known form of functional relationships between a dependent variable

and explanatory variables. And fitting a parametric model usually means evaluating

of unknown coefficients as we do in the case of linear regression. Many phenomena

provide data that has a complicated structure and an intrinsically nonlinear character.

If one is interested in applying regression like techniques in such situation, the natural

choice would be an approach which is known as nonparametric regression. The feature

that differentiates a nonparametric approach from a parametric one is the absence

of knowledge about exact form of functional dependence. Although such dependence

is still described by a mathematical equation with many unknown parameters, the

data, not our model choice, defines eventual form of the function. This flexibility of

nonparametric model often helps to capture features of the data that would be very

difficult to describe using other tools.

As pointed out by Ruppert [35], there are several approaches to nonparametric

modeling: regression splines, smoothing splines, series-based smoothers 'such as

wavelets), kernel methods, etc. We will use penalized splines, also known as P-splines

or low-rank splines. From methodological point of view penalized splines are close to

ridge regression and mixed models. Ruppert [35] states that "Markov chain Monte

Carlo provide...the most satisfactory approach to fitting complex semiparametric

models as well as the direction that semiparametric regression is most likely to take

in the future."

Let's consider a set of points 'x i , yi ), i = 1, 2, ..., N, without assuming any

hidden probabilistic models. According to [4], an ordinary nonparametric model may



where f 'x) is some function of interest, and εi are independent N'0, σ 2 ) variables.

Let's define x± as max(x, 0), in this case for some number λ,

If λ 1 , λ2 , ..., λ is a set of different numbers from the range of x, then any linear

combination of 1, x, 'x — λ l ) + , ..., 'x — λ2 ) ± , ..., 'x — λκ ) + is called a linear spline,

numbers λ 1 , λ2 , ..., λκ are called spline knots. The spline model for f(x) from '2.7) is

Γι- 1

One may try to use a standard least square approach for fitting model '2.7)-'2.9).

But as number of knots increases, "overfitting" becomes a real problem. "Overfitting"

means excessive flexibility when the fitted function, instead of only capturing main

features of the data, catches its random changes. Shrinkage of the spline coefficients,

that impose penalty on their size, may help to avoid overfitting [23] . There are

different forms of constraints that may be used here, but from technical point of

view, if one is interested in using a least square approach, the most suitable form is

the spherical restrictions:
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Figure 2.3 Linear penalized spline regression fits to the LIDAR data (see [35] ), 24
knots are used.

as a function of B, for some fixed positive value of α; 	 is an Euclidian norm, and /T

represents transpose of a matrix. The value of the smoothing parameter α in (2.14) is

determined by the value of the constant C in (2.10). Figure 2.3 from page 67 of [35]

shows the influence of a smoothing parameter on the spline fit. When α = 0, model

overfits the data being too sensitive to random changes in the dataset. Model fits

data well when α = 900. When α = 10 6 , the influence of the spline knots decreases,

and we observe the least-squares line.

Several recent works [35, 47] pointed out a close relationship between penalized

splines and mixed models.

We will use the Linear Mixed Effects model in the form developed by Laird

and Ware [16] :



15

where y is a n x 1 response vector, X is a n x m matrix of explanatory variables, β is

a m x 1 vector of fixed effect coefficients, Z is a n x k design matrix of random effects,

ε is a n x 1 error vector with independent components, u is a k x 1 vector of random



The linear mixed model y = Χβ + Zn + ε represents a penalized spline with

the criterion (2.18), where Χβ corresponds to the polynomial part of (2.9), and Zn

stands for the spline basis functions part. One can easily see that criteria (2.14) and

(2.18) lead to the same estimations of the spline coefficients.

2.5 Baiesian View uf the Linear Mixed Effects Mudel

Mixed model approach to penalized splines allows a Bayesian interpretation. Conditional

distributions for the Bayesian version of model (2.15) may be defined in the following

way:



Figure 2.4 Graphical representation of the Bayesian linear mixed model.
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appropriate prior distributions should be assigned to hyperparameters σ 2̂., σQ, and

0-2 .Q

Cigure 2.4 shows a graphical representation of the Bayesian linear mixed model.

An example of one-dimensional spline model in BUGS is given in [6] .

Mixed model approach to penalized splines, and, in particular, its Bayesian

implementation, allows us to avoid the difficult problem of choosing the smoothing

parameter α in (2.14) and (2.18), or choosing of the constant C in (2.10). The

parameter α will be determined automatically as the ratio 2 . Cigure 2.5 shows a

Bayesian spline fit (red line) with 30 knots for the part of the BR data (see section

3.1 of chapter 3), access point 5.
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Figure 2.5 Red line is a Bayesian spline fit (signal strength versus distance to the
access point) for the 5 th access point (BR data). Yellow line shows the hierarchical
Bayesian model fit (chapter 3).
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2.6 sampling/importcince Resembling (SIR)

From the first section of this chapter we know that very often a Bayesian model is

specified up to the constant (see formula 2.3), i.e. we know a likelihood L(Θ, x) and a

prior distribution p(θ), and therefore a posterior is proportional to the product of the

likelihood and the prior: p(θ x) Mc L(Θ, x)ρ(Θ). But the calculation of the normalizing

constant JL(Θ, x)ρ(Θ)dθ poses a real challenge. An elegant way to deal with such

problem is presented in [38] .

Suppose one can easily generate sample from a continuous density g(8), and our

ultimate aim is to generate a sample from a density h(8) that is absolutely continuous

with respect to g(8). Let's assume that h(8) is known up to the constant, i.e. we

know the functional form of a positive function f (8), and h(8) oc f (8). If there exists

constant M > 0, such that 9(8> < M for any 8, then rejection sampling [30] allows to

generate sample from h(8) :

1. Generate 8 from the distribution g(8);

Generate u from uniform distribution on [0, 1];

3. If u < 9(0)M ' accept 8, otherwise discard 8 and go to the step 1.

The result this procedure will be a sample from the target distribution h(8).

When M is unknown, one can get a sample from the target distribution using the

following procedure that is known as boocscrap resampliug [8] or SIR (sampling/importance

rescimplingg) algorithm [33]:

1. Take a sample of size n from the distribution g(8) : 0 l , 82 , ..., 8n;

2. Calculate weights
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Figure 2.6 A graphical representation of the state-space model

The new sample is approximately distributed as h(0), and the approximation

gets better as the sample size n increases.

2.7 The Particle Filter

Cor dynamic tracking we are going to use a Bayesian method that is commonly known

as a parcicle filcer or sequencicil Monce Ccirlo method. The comprehensive reviews of

Bayesian methods for dynamic tracking are given in by Liu, Chen, and Douche [19, 7] .

Particle filter uses a state-space model (figure 2.6) that contains two parts:

a) State vector that evolves according to the state equation:

and Lk is a noise vector with the known density.

b) Observational equation:

and ink is a noise vector with the known density.

The initial density of the state vector p(xo) is assumed to be known. One

can not observe the state vector B, but instead at time k the set of observations

{ yid , Y2, . • . , yk } is available, we denote it as DB .
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Suppose that at time k-1 we have a particle cloud (sample) {x4_1, χB_1, •..
,
 x1}

of size M, that approximates the posterior distribution p(xk1 Dkl ). Gordon et al.

[13] proposes the following algorithm to estimate xk when Wyk is observed:

(1) Pass the sample via the system model, i.e. draw x' k using the state equation

qk-ι(ΧB-1, ξk-ι), j = 1 = M. This transforms the cloud {xk_ 1 , xk-1, •••, zk -
1} into the

cloud {χk*, χk*, ... χk *} , each particle in the latter sample has weight 1/M.

(2) Having received the observation yB , re-evaluate the weight of each particle:

_  ρ(yB I x'B* )

	(2.29)B	 M	 '

ΣΡ ρ(Υk I zk* )
j=l

where conditional density p(yB x'k*) is defined by the observation equation (2.28).

(3) Define a discrete distribution on {xk*, χ 2B*, ... , x1 * } with probabilities {wk, w, ...,

Resample M times from this discrete distribution to generate the sample {4, x , ..., x}.

ThisThis sample is a particle representation of the conditional density p(X B Dk ) .



CHAPTER 3

GRAPHICAL MODELS FOR LOCATION

3.1 Detesets

We collected RSS data from three floors at two sites, referred as BR, CA Up and

CA Down. Both the BR and CA sites are office buildings and have deployed 802.11b

wireless networks. Figure 3.1 shows the floor plans for the both sites.

To make our RSS measurements, we used a Linux IPAQ with a modified driver

updated to scan for access points. The IPAQ had a custom client and a standard

Konqueror web browser. The user making RSS measurements clicked on their current

location in an image of the floor as displayed on the browser. The posting of this

information triggered an RSS measurement request at the client from the web server

on a separate MCP channel. The web server then recorded the coordinate and RSS

vector information at that location. We did not specifically orient the IPAQ in any

way while taking measurements.

The BR site has 5 access points and measures 225 ft. x 144 ft. We made 254

RSS measurements along the corridors of this site. The measurements were made

over different sessions spanning several days.

The CA Down floor has 4 access points, three of which are collinear, and

measures 250 ft. x 175 ft., with a "slice" removed. Due to the collinear of the

three access points, we installed two temporary access points. The CA Up floor has

access points. At the CA site, a colleague took 146 measurements on the "Down"

floor and 56 measurements on the "Up" floor.

3.2 Mudels end Exberiments

Our goal is to construct a model that embodies extant knowledge about Wi-Fi signals

as well as physical constraints implied the target building. We present a series of

22
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Figure 3.2 A simple regression model for X.

models of increasing complexity, in each case showing results with varying training

dataset sizes. We focus throughout on predictive accuracy.

3.2.1 Indebendent Regressiuns (IR mudel)

Cigures 3.2 and 3.3 show graphical models, using BUGS plate notation, for a two-

dimensional location estimation problem in a building with five access points. We will

refer to the combination of these two models as IR. The vertices X and Y represent

location, p1 (j = 1= 5) are signal strengths, and Lk (k = 1= 6) and bk (k = 1= 6) are

regression coefficients of two independent regression models. The first model regresses

X on the vector of signal strengths, another does the same for Y.

Here is the specification of the IR model:



Figure 3.3 A simple regression model for Y.
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Collowing the WinBUGS notation, 'Νοrmal(μ, τ)' denotes a Gaussian distri-

bution with mean μ and precision τ (τ =  ) . Win UGS code for this model is given

in Appendix A.1. Table 3.1 contains simulation results for the IR model. Cor each

value of the training data set (10, 25, 50, 100, 150, and 200 points), we sampled from

the BR data a training sample of the given size and 30 additional points to create a

testing data set. The total number of iterations was 50,000 with a burn-in period of

40,000. Cor each size of the training data set, the procedure was repeated 10 times.

Table 3.2 contains simulation results for the second data set (CA Down). The

sampling procedure was the same as for the BR data.

Cigure 3.4 shows scatterplots that characterize possible application of IR models.

The data output from one run of the IR model with 100 training data points was used.

Blue dots represent last 1000 simulations of the IR model for the third, tenth, twelfth,

seventieth, twenty fifth, and thirtieth point from the test data set, big red circles show

the actual location of the appropriate test point. The fact that each simulated blue



Table 3.1 Predictive performance of the IR model on the BR data.
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Teble 3.2 Predictive performance of the IR model on the CA Down dataset.
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Figure 3.4 Scatterplots for the IR model.

cloud contains a red point, the actual location, may be used in combination with

more sophisticated models.

3.2.2 Multiveriete Regression Model (MR model)

Unlike IR model, that comprises of two independent regression models, the multi-

variate regression models the relationship between p response variables and a set of q

explanatory variables [28}. In case of the BR data, there are two response variables:

Χ and Y, and five predictor variables: pi, Ρ2, ... , 5. Bayesian model MR for the BR

data is specified below:
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This Bayesian model uses the multivariate (multivariate in this case) normal distri-

bution and Wishart distribution with 2 degrees of freedom (the rank of T) for the

prior of the inverse of the covariance matrix of normal distribution. As pointed out

by Lindley [18] , the choice of the scale matrix D has small effect on the posterior

1 0
assessment of T -1 . We specified D as . Win UGS code for this model is

0 1)
given in Appendix A.2. Table 3.3 shows the simulation results for the MR model.

The simulation procedure is identical to the one for the IR model, i.e. for each value

of the training data set (10, 25, 50, 100, 150, and 200 points), the sample of the

appropriate size was drawn from the BR data, and 30 additional points were drawn

from BR data to create a testing data set. The total number of iterations for each

run of the MR model was 50,000, with a burn-in period of 40,000. The procedure

was repeated 10 times for the each sample size. As one can see, IR and MR models

performed very similarly for every sample size. Table 3.4 shows simulation results for

the CA Down dataset.



Teble 3.3 Predictive performance of the MR model on the BR dataset.
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Teble 3.4 Predictive performance of the MR model on the CA Down dataset.



1 	 1
R NR

Ι 	 Γ

R NR
Γ - - - -τ

R NR

Ο -1

ιτ τ

Γ 1
R NR

Ν=150 	 Ν=200 	 Ν=10 	 Ν=25

Ν=50 	 Ν=100 	 Ν=120 	 Ν=140

ον

οΟ.ο-+
1 	 ι
IR MR

ι 	 ι
R MR

ι	 r
R MRR NR

-;- -+-
ι'ιιιι

+ +1	 1

	

: 	 : 

ο

I 	i
t 1

^ 	 1

1 1
ι 	 r
R MR R MR

ι 	 ι
R NR

ι
ι
ι

1
of

Ο

8-

τ τ
^ 	 ι
ι 	 ι

ί 	 ι

R MR

ti

31

Ν=10 	 Ν=25 	 Ν=50 	 Ν=100

Figure 3.5 Predictive accuracy uf the Independent Regressions model (IR) versus
the Multivariate Regression model (MR) for the BR data and the CA Down data.
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Figure 3.6 A Bayesian graphical model for location estimation. This is model Μ1.

3.2.3 A Non-Hierarchicel Bayesian Graphical Model that Uses Information

about AP's Locations

Cigure 3.6 shows a particular graphical model for a two-dimensional location estimation

problem in a building with four access points. In what follows we refer to this model

as Μ1 (although the number of access points varies) .

The vertices X and Y represent location. The vertex D 1 (respectively D2, D3,

and D4 ) represents the euclidean distance between the location specified by X and Y

and the first (respectively second, third, and fourth) access point. Since we assume

the locations of the access points are known, the Di 's are deterministic functions of X

and Y. The vertex Ai represents the signal strength measured at (X, Y) with respect

to the ith access point, i = 1, ... , 4. The model assumes that X and Y are marginally

independent.
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Specification of the model requires a conditional density for each vertex given

its parents as follows:

Here L and B denote the length and breadth of the building respectively. The

distributions for X and Y reflect the physical constraints of the building. The model

for Ai reflects the fact that signal strength, decays approximately linearly with log

distance. Note that we use Νιμ, τ) to denote a Gaussian distribution with mean μ

and precision τ so that the prior distributions for bib and bit have large variance.

Cigure 3.7 shows a more compact representation for Μ1 using the BUGS plate

notation for replicated sub-models and with d denoting the number of access points.

Win UGS code for model Μ1 is given in Appendix A.3.

Cigure 3.8 shows the predictive performance of model Μ1 on the BR data, as

a function of training set size. Specifically, for each training set size N, we plot

the average performance for 30 replications of a random test-training split, using Ν

observations for training and one observation for testing. The red solid curve shows

the results for Μ1 (i.e., the model of Cigure 3.7). In each case, and throughout

this chapter, the estimates resulted from 110,000 MCMC iterations, discarding the

first 10,000. This seemed to provide adequate convergence in most cases, according

to standard BUGS diagnostics. Cor comparison purposes, the blue dotted curve

shows the equivalent results for the smoothed nearest-neighbor "SmoochNNj model

of Krishnan and coworkers [14] . The SmoochNN model proved highly competitive

in comparison with two other benchmark systems and hence we use it for comparison



Figure 3.7 A Bayesian graphical model in plate notation (model Μ 1 ) .
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Teble 3.5 Leave-one-out average accuracy in feet for the BR data. Results are
averaged over 30 replications.

Teble 3.6 Leave-one-out average accuracy in feet for the CA Down data. Results
are averaged over 30 replications.

purposes in this paper. The Figure 3.8 shows that Μ1 outperforms the Smooched

model with smaller training sample sizes but underperformed the Smooches model

at the larger sample sizes.

Cigure 3.9 provides shows more detail and also shows results for the other

two datasets. The results for the three different datasets are qualitatively similar.

Tables 3.5, 3.6, and 3.7 provide corresponding summary statistics. Note that predictive

accuracy does tend to improve with training sample size, although not in every case.

Teble 3.7 Leave-one-out average accuracy in feet for the CA Up data. Results are
averaged over 30 replications.



Figure 3.8 Average predictive accuracy of the non-hierarchical Bayesian graphical
model Μ1 , the hierarchical model Μ2 i and the Smooc ANN model on the BR data.
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3.2.4 A Hiererchicel Beiesien Grephicel Mudel

Next we seek to incorporate the knowledge that the coefficients of the linear regression

models corresponding to each of the access points should be similar since the similar

physical processes are in play at each access point. Physical differences between

locations of the different access points will tend to mitigate the similarity but nonetheless,

borrowing strength across the different regression models might provide some predictive

benefits.

Cigure 3.10 shows the hierarchical model Μ2 . The conditional densities for this

model are (see Appendix A.4 for the WinBUGS code):

The green dashed curve in Figure 3.8 shows the predictive accuracy of Μ2 on

the BR data. A comparison of Μ1 and Μ2 shows that the hierarchical model performs

similarly to its non-hierarchical counterpart, although Μ2 does provide improvement

in average error for the smallest training sample size of 5.

Cigure 3.11 provides shows more detail and also shows results for the other

two datasets. Again, the results for the three different datasets are qualitatively



39

Figure 3.10 A Bayesian hierarchical graphical model using plate notation (model
Μ2

similar. Tables 3.8, 3.9, and 3.10 provide corresponding summary statistics. In

general, the results show small differences between the non-hierarchical model Μ 1

and the hierarchical model Μ2 .

3.2.5 Training Data With Νο Location Information

Model Μ2 incorporates two sources of prior knowledge. Cirst, Μ2 embodies the

knowledge that signal strength decays approximately linearly with log distance. Second,

Table 3.8 Leave-one-out average accuracy in feet for the BR data. Results are
averaged over 30 replications.



Figure 3.11 Predictive accuracy of the non-hierarchical Bayesian graphical model
(Μ1 ) vs. the hierarchical Bayesian graphical model (Μ 2 ) for the BR data, CA Down
data, and CA Up data.



Teble 3.10 Leave-one-out average accuracy in feet for the CA Up data. Results
are averaged over 30 replications.

the hierarchical portion of Μ2 reflects prior knowledge that the different access points

behave similarly. Here we pursue the idea that perhaps this prior knowledge provides

sufficient constraints to obviate the need to know the actual locations of the training

data observations. Specifically, the training data now comprise vectors of signal

strengths with unknown locations; X and Y in Μ1 and Μ2 become latent variables.

Cigure 3.12 shows the average predictive performance for the BR data with

different numbers of randomly signal strength vectors. In each case the results shows

averages over 30 replications, except for the maximal case (254 for BR, 146 for CA

Down, 56 for CA Up) which uses all the signal strength vectors in the training data.

The red solid curve corresponds to Μ 1 and the green dashed curve to Μ2. The

results for the SmoochNN model are reproduced from Cigure 3.8 and reflect training

data with known locations. These results show some striking features. With no

location information, Μ1 performs poorly and shows no improvement with increasing

numbers of signal strength vectors. Model  Μ2, however, from about 10 training



Figure 3.12 Average predictive accuracy of the non-hierarchical  Bayesian graphical
model Μ1 , the hierarchical model  Μ2, and the SmoocANN model on the BR data
with no location information.

vectors onwards, performs almost as well as the SmoocANN model trained on data

with complete location information for each signal strength vector!

Figure 3.13 provides shows more detail and also shows results for the other

two datasets. Once again, the results for the three different  datasets are qualitatively

similar. Tables 3.11, 3.12, and 3.13 provide corresponding summary statistics. In each

case the hierarchical model, even with no location information, provides predictive

performance that is close to, although not as good as, the state-of-the-art  SmoochNN

model (that uses location information).

Dropping the location data requirement affords significant practical benefits. As

discussed in chapter 1, the location measurement process is slow and human-intensive.
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Teble 3.11 Leave-one-out average accuracy in feet for the BR data. No location
information in the training data. Results are averaged over 10 replications.

Teble 3.12 Leave-one-out average accuracy in feet for the CA Down data. No
location information in the training data. Results are averaged over 10 replications.

Teble 3.13 Leave-one-out average accuracy in feet for the CA Up data. No location
information in the training data. Results are averaged over 10 replications.
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Figure 3.13 Predictive accuracy of the Bayesian graphical models with no location
information. Non-hierarchical model (Μ1 ) vs. the hierarchical Bayesian graphical
model (Μ2 ) for the BR data, CA Down data, and CA Up data.
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By contrast, gathering signal strengths vectors without the corresponding locations

does not require human intervention; in the infrastructure approach, suitably instru-

mented access points or sniffing devices can solicit signal strength measurements from

existing Wi-Ci devices and can do this repeatedly at essentially no cost.

We note the existing location estimation algorithms that we are aware of all

require location information in the training data to produce any estimates.



CHAPTER 4

SPLINE MODELS

All models that we have considered so far used the fact that the signal strength

depends on the distance between a wireless device and an access point. Such dependence

allowed us to develop several models for predicting the location of a wireless device

using RSS. In the ideal world the signal strength would attenuate evenly in all

directions, and contours of constant signal response would be concentric circles with

an access point as the center. In the real life the situation is different, every floor

of each building has a complicated structure. Walls and objects of various nature

distort a signal significantly, whereas corridors allow better signal transmission along

them. One can see that from the contour plots on [fig.4.1] . There were some works

that proposed a model for WI-Fl signal propagation inside buildings. The general

idea is the following: radio waves, generated by a transmitter, take multiple paths to

a receiver. If one can accurately model these paths, it will enable him to calculate

the average signal strength at every point of a building, and, therefore, use this

information for prediction purposes. But to do that, a very accurate building model

is required, and the model must be updated with every major change in the floor

configuration, etc.

We would like to consider the whole situation from another point of view.

Instead of describing the behavior of "each particle in the Universe," i.e. instead

of using some kind of propagation model, we would like to create a "signal map"

for each access point, and then to use these maps in our general graphical model

framework to predict the location of the transmitter. Different modifications and

extensions of the approach will be discussed.
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Figure 4.1 Contour plots for the BR data set (JMP output).
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4.1 A Beiesien Sbline Mudel (BS)

Let's consider scatterplots of the received signal strengths p1 — p5 versus location

coordinates (x and y ) . Figure 4.2 shows such scatterplots for the BR data. Due

to the technical restrictions, standard WI-FI equipment can detect a signal in the

-92..-32 dB range. If signal becomes stronger than -32 dB or weaker than -92

dB, it will be truncated to -32 and -92 respectively.

If we divide the whole X — Y domain into smaller regions, the dependence

between signal strength and variables L and y is close to linear for each of these

subdivisions. This observation is valid for every access point. On the other side,

the overall relationships between signal strengths and (L, y) coordinates are quite

complicated. They can not be adequately described by means of usual (parametric)

regression of signal strengths on L, x , and their interactions, even if one decides to

use nonlinear terms. Instead we can think about some kind of response surface model

[21] that utilizes nonparametric (nonparametric) spline approach. One-dimensional

penalized splines from the Bayesian point of view were described in section 2.4.

To deal with three-dimensional scatterplots (two-dimensional spline), we have to

extend the set of basis functions to include L-terms, x-terms, and their interactions.

Instead of using all possible pairwise products of basis functions, we will use points

{ (Lk , xi) }k-1 , 2 ,...,Κxy from the training data set to form paired basis functions:

where KLx is the total number of points in the set. Sets {ξi}i=ι,2,...,Kx  and {ηi}i=1,2,...,Ky

of the unique values of L and x , respectively, are the knots of L-terms and y-terms:



Figure 4.2 3D scatterplots for the BR data.

, Kx is a number of the unique values of x, and Ay — a number of the unique values

of y in the training data. Functions (4.1) and (4.2) form a set of bivariate basis

functions.

This leads to the following model for the average signal strength with respect

to a. Marti an τ l a i r 	 rani nth
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Knot specification for spline models is a nontrivial problem. If there are A

potential knots, there will be 2 Κ possible knot sets. But as pointed out by many

researches [34, 43] , in the case of penalised splines knot specification is a minor issue.

We will use here a modification of the approach proposed by Ruppert [34] .

He suggests to use the sample quintiles of the independent variables as the spline

knots. Taking into consideration the fact that, due to the cost and labor reasons,

training data sets for the location problem usually contain not so many observations,

typically a hundred or two for each floor of a building, we are going to use every (x, x )

coordinate of each training point as a knot in the spline model. Note that instead

of using a tensor producc basis that includes all pairwise products of x-terms and

y-terms from (4.2), we use only (x, y) points from the training data set as knots in

the two-dimensional part of (4.3). Here is the specification of the spline model (BS

model) for the BR data set (XL, X R, AL, and AR are constants that characterize

geometry of the floor'):
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Teble 4.1 Predictive accuracy in feet for the BR data (bivariate spline model).

Win UGS code for the BS model is given in Appendix A.5. Tables 4.1 shows

predictive accuracy of the BS model for the BR data. For each training set size

N, we average performance for 5 replications of a random test-training split, using

N observations for training and 30 observations for testing. We run 4, 000 MCMC

iterations for each replication of the experiment, discarding the first 3, 000. Model

performs quite well with a resolution (50th percentile) of under 2 meters for the

training set of 200 points. On the training data sets of the same size, the BS

model outperforms models from chapter 3, non-hierarchical and hierarchical Bayesian

models, as well as the SmoochNN model that was used for comparison.

Figure 4.3 gives an interesting graphical illustration of the BS model. It shows

surfaces (for 4 access points, a picture for AP 5 is given in Appendix A.6) that

are generated by splines (green surfaces), training data set (blue points), and a test

data set (red points). Table 4.2 shows predictive accuracy on the CA Down data.

Although the resolution (50 th percentile) and 75 th percentiles look very good, mean

error of 21— 22 feet is rather big. As mentioned above, access points at the CA Down

site located in a way that makes our task harder to fulfil. Although the BS model

shows smaller 25 th , 50th , and 75 th  percentiles than any model from chapter 3, those

models outperform the BS model on the CA Down data if the mean predictive error
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Figure 4.3 Graph illustrates how the BS model works on the BR data (4 APBs are
shown). Green surface is generated by splines. Blue points represent the training
data set, red points belong to the test data.
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Teble 4.2 Predictive accuracy in feet for the CA Down data set (bivariate spline
model).

is considered. Several points with big predictive errors draw the mean up. We will

address this issue in the next section.

4.2 A Beiesien Sbline Mudel with Infurmetive Priurs (BSI)

Here we seek to incorporate the knowledge about location coordinates, X and A, that

one may get from the simple models like IR or MR (chapter 3) . We hope that such

knowledge, in the form of prior distributions on X and A (new, tighter, bounds on

the uniform priors), will reduce the maximum predictive error and improve the overall

prediction accuracy. We will consider two-step model BSI that combines models IR

and BS as follows:

1.Use the IR model to calculate rough priors on X and A;

2. Incorporate prior information into the BS model.

BSI model executes IR algorithm at step one, with 50, 000 iterations and a

burn-in period of 40, 000. The last 1000 simulations of X and A are used to get prior

information for the BS model. Minimum of these 1000 iterations of X becomes a

low bound on X in the BS model, and maximum of the last 1000 iterations creates
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Table 4.3 Predictive accuracy in feet for the BR data set ( BSI model with
informative priors on X and Y).

Teble 4.4 Predictive accuracy in feet for the CA Down data set with informative
priors ( BSI model) .

an upper bound on X, the same procedure applies to A. Table 4.3 shows predictive

performance for the BSI model on the BR data. Both, BS and BSI, models show

a resolution below 2 meters for training sets of size 200. As we expected, informative

priors reduce the maximum predictive error.

Table 4.4 shows the predictive model accuracy on the CA Down data. On

this data, the BSI model performs better than BS. Maximum predictive error is

effectively bounded, and so as the mean error. BSI also outperforms all models from

chapter 3 (but, unlike the hierarchical Bayesian model Μ2, BSI can not be used

without knowing location information for the training data set.)
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4.3 Off-line/Online Versiun uf the BSI Mudel (Of f — line/BSI

It takes approximately 5 hours (on 4.2 Gh Pentium IV PC with 1Gb of RAM) to

calculate one run (4000 MCMC iterations) of BS or BSI with 150 training and 30

test points. To deal with this situation, we would like to investigate whether it is

possible to use in the BSI model spline coefficients that were identified off-line (via

the BS model).

This approach involves four stages:

1. Run the BS model only for splines coefficients;

2. Run the IR model to calculate model coefficients;

3. Use the IR model with coefficients from stage 2 to calculate rough priors on X and A;

4. Use coefficients from step 1 and information from step 3, and

run the BSI model only to identify unknown location (x, x ) .

At stage 1 we ran 10000 MCMC iterations with burn-in period of 8000, at stage

2 we ran 50000 MCMC iterations with 40000 burn-in, at stage 3 we ran 1100 MCMC

iterations (100 burn-in) of the IR model with known (from stage 2) coefficients, then,

at stage 4, we applied the BSI algorithm with total number of MCMC iterations of

2000, with 1000 burn-in period. Table 4.5 shows the predictive accuracy results for

such an approach. This method allows to identify the location in seconds rather than

in hours when using BS or BSI approaches. The off — line!BSI approach performs

on the BR data similarly to BS and BSI.

Table 4.6 gives the results of the third (of f — line!BSI) approach for the CA

Down data. Predictive accuracy of this approach is comparable to the predictive

accuracy of the BSI method.

Figure 4.4 helps us to compare all three models (BS, BSI, and of f —line/BSI).

It shows that informative priors, derived from a simple regression model, improve
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Teble 4.5 Predictive accuracy in feet for the BR data set (off-line identification of
spline coefficients and informative priors on X and Y).

predictive performance of the spline model. The of f —line/BSI model with "plug-in"

coefficients shows performance that is comparable to the full Bayesian model with

informative priors.

Convergence is an important issue for models that, as BS or BSI, contain

hundreds of parameters. Instead of focusing on every single parameter in the model,

an infeasible task when one is dealing with so many parameters, we will direct our

attention to the estimations of xs and ys, as the most important proof of the validity

of these models (BS, BSI, off — line/BSI) is their predictive performance.

Figure 4.5 shows important information about x and y estimations. There are

three graphs in each column, the first column contains graphs that characterize x[1]

and x [1] estimations on the data split of 200 training data points and 30 test points

(BR data), the second columns shows graphs related to the estimations of x[4] and

y[4]. Time series of x and y (we used 1000 MCMC iterations) show that Markov

chains mix well. Autocorrelations plots (figure 4.6) does not reveal any problems

either. Although estimations only for two locations are given here, graphs for others

(traceplots, time-series plots, and ACC plots) look similar.



C
A 

D
ow

n 
da

ta

O
50
	

10
0	

15
0	

20
0	

25
0

C
A 

D
ow

n 
da

ta

O
50
	

10
0	

15
0

20
0

0 	
10

Η 
Ι Ι
	

1 .
...

._
 _

 .

Η 
Ι Ι
	

λ• 
._ ..

(Dιο ιο ο 5 ς,) ο ο ο Γ̂ ν1 Ι

Ν
 
.

rW
λ ν1

Β

BR
 d

at
a

20
	

30
	

40
	

50
	

60
ι	

ι	
ι	

ι	
ι

ό ο
λ.

..
..
.	

.

Ν -
0	

50
ι	

ι

B
R
 d

at
a

10
0	

15
0	

20
0

ι	
ι	

ι

-
-
-
-
λ
.
.
.
.
	

.	
.

Η
..
..

λ. -
	

.	. ...._ λ	._..	
.	.

-.	
.

-
Ε-Ε
Ι .

BR
 d

at
a

BR
 d

at
a

Ζ
Ο

C
A 

D
ow

n 
da

ta
C

A 
D

ow
n 

da
ta

O
50
	

10
0	

15
0	

20
0

O
50
	

10
0	

15
0	

20
0

O
50
	

10
0 	

15
0 	

20
0

O
1
0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
ι	

ι	
ι	

ι	
ι	

ι	
ι	

ι

Αη

C
A 

D
ow

n 
da

ta
BR

 d
at

a
BR

 d
at

a

O
20
	

40
	

60
	

80
40
	

60
	

80
O

20
O

50
	

10
0	

15
0	

20
0

οι

8



59

The fact that the off — line/ BSI version of the BSI model shows predictive

performance that is comparable to accuracy of the full Bayesian models (BS and

BSI) increases out confidence in the validity of our models.

Another indirect way to test the model validity is to run it starting from the

exact locations, i.e. to start MCMC sequences for X and A in the exact locations

(test data). Tables 4.7 and 4.8 show summaries of such simulations. For the both data

sets results are close to the obtained above, and they do not reveal any discrepancies.
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Figure 4.5 Last 1000 MCMC iterations 'track' plots and time-series plots for x and
y. Red points represent estimated locations, green rectangles are actual locations.
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Table 4.8 Predictive accuracy uf the BS mudel ("plug-in" cuefficients) on the CA
Down site.



CHAPTER 5

ONLINE ESTIMATIONS AND MOVING OBJECTS

5.1 A Hibrid MCMC — Sembling Imburtence Resembling Methud

(MCMC-SIR)

In the previous chapter we introduced several versions of the spline graphical model

for location. Although the latest version of this model allows us to find the location of

a wireless device in seconds, rather than in hours, we would like to propose a particle

implementation of the spline model. Particle version is suitable for the real-time

calculations and, as one can see from the results below, it is comparable to or even

surpasses all other methods (of course, one need to know the locations of all points

in the training data set).

Let's consider a hybrid MCMC-SIR approach for the BR data. As in the case

with the BSI model from chapter 4, we used the BS model for off-line identification

of the spline coefficients (MCMC part to get parameter estimations), therefore all of

them (β1 — β5, bl — b5, dl — d5, s1 — s5) are assumed to be known.

Then we are going to apply Sampling Importance Resembling algorithm for

location estimation. We used particles sets (clouds) of different sizes M, M Ε

{50, 100, 500, 1000,2000,3000, 4000, 5000}.

Here is the MCMC — SIR method for the BR data:

1. Generate a particle cloud of size M: {(x i , yid) i = 1, 2, ..., M},

where xi -Uniform(XL, X R) and yid -Uniform(YL, AAR) .

2. Using coefficients of the BS model from the off-line stage, calculate expected

signal strengths ml (x, yid), m2(x, yxis),m3(x,yid),m4(x,yid),m5(Χi,yid) for each ofM

particles.
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3. Let's denote a vector of the received signal strength from the wireless object

as q, q = (q1, q2, q3, q4.q5). For each particle j (j = 1, 2, ..., M) from the particle cloud

we calculate five weights w1j  , w23 , w33 , w4 , w53 , where

Lk, k = 1 = 5, is a standard deviation calculated during the off-line stage of

the algorithm. Expression 5.1 is derived using likelihoods from the BS model (see

chapter 4) .

4. Let's define w3 as a product of all five weights (by the number of access

points), here we assume that received signal strengths for different access points are

independent:

5.Draw a sample of size M from the discrete distribution over {(L 1 , xis), (L2, y2),

(ΧΜ , yM) } placing mass Du ; on (L3 , y; ) .The resembled cloud { (Li , yi) (L,
 )

(LMT, yM)} represents an approximation to the posterior distribution of a location of

the wireless device.

6. A point estimation of the location may be found by averaging L and y

coordinates over the whole particle cloud:



Figure 5.1 shows the predictive performance of model SIR on the BR data as a

function of the size of particles cloud. Graphs of different colors show the performance

of the algorithm on the training data sets of different sizes. As one might expect,

predictive accuracy improves, as the training data size grows. The M = 1000 or 2000

is an 'optimal' number of particles to use, in the sense that with such M we can reach

the maximum model accuracy still doing all calculations online.

Table 5.1 provides detailed results of the method performance when the cloud

of 2000 particles is used.

Figures 5.3 shows boxplot summaries of all simulation results for the BR data.

"N" denotes the number of points in the training data set, "M" is the number of

particles in the MCMC — SIR method.

Figure 5.2 shows the predictive performance (resolution) of model MCMC —

SIB Ron the CADowndata. As for theBRdata, we investigated the model on

the training data sets of different sizes (25, 50, 100, and 120 points) using different

numbers of particles. As one can see from the graph, as in the case of the BR

data, the model shows the best performance, when the number of particles in the

MCMC — SIR model equals to 1000 or 2000. Table 5.2 shows results for the cloud

of 2000 particles. Figure 5.4 shows boxplot summaries for all combinations of the

training data sizes and particles clouds on the CA Down data.
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Teble 5.2 Predictive accuracy of the MCMC-SIR model on the CA down site, Μ
(number of ρarticΙes)=2000.



η_~
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5.2 MCMC-SIR Methud with Infurmetive Priur Cluuds (MCMC -

SIRMethud)

In the previous chapter we introduced the BSI model that used simple regressions

(IR model) to put informative priors on distribution of location parameters X and

A. Here we present the particle version of this method.

In the MCMC — SIR method from the previous section of this chapter, prior

cloud was distributed uniformly in the interior of the building floor. For the CA Down

data set it meant that the prior distribution followed a quite complicated geometry

of the building (see figure 5.5) .

To generate an informative particle cloud we used the IR model with regression

coefficients that had been identified off-line (beforehand), then the MCMC — SIR

method was applied to an informative cloud of particles. Figure 5.6 shows the

performance of this method on the BR data, figure 5.7 shows resolution graphs for

the CA Down data. One can see that the smaller number, M = 500, of particles is

needed to reach the maximum level of accuracy.

Table 5.3 shows detailed results for the BR data when M = 2000, table 5.4

gives the same information for the CA Down data set. Comparing to the SIR

method, informative priors allow to reach the highest level of accuracy using the
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Figure 5.6 Resolution (50'percentile) in feet of the MCMC — SIR' model
(MCMC & Sampling Importance Resembling with Informative Prior Clouds) for the
BR data set.



Figure 5.7 Resolution (50'h percentile) in feet of the MCMC — SIR' model
(Sampling Importance Resembling with Informative Prior Clouds) for the CA Down
data set.
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smaller number of particles, they also effectively restrict maximum predictive error.

Figures 5.8 and 5.9 show boxplot summaries that characterize the performance of the

MCMC — SIR' approach on the BR data and CA Down data respectively.

5.3 Muving Objects

So far we have considered a problem of locating stationary (non-moving) objects.

Although we do not have data that describes real moving object, we can create such

a data set from the existing data. From a subset of the BR data of size 240, we picked

up 22 points that form a path. Figure 5.10 shows the training data set (blue points)

and a selected path (red) . There are several ways to track a moving object in the real

time. We will explore two of them: the MCMC-SIR approach and the combination

of MCMC (off-line estimation of the spline coefficients) and a Particle Filcer.

One may apply the MCMC — SIR method to track a mobile object. Table 5.5

shows the performance of the SIR method fir the selected path. Green line on Figure

5.11 shows the MCMC — SIR estimation of the path (depicted in red) .

Unlike the MCMC — SIR method, that estimates every new point indepen-

dently from all others, MCMC-Particle Filcer is getting information from the estimations

made in previous moments.

The state equation. that describes the motion pattern. is playing an important
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Figure 5.8 Predictive accuracy of the MCMC — SIR' model (MCMC — SIR
with informative prior cloud) on the BR data.
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Figure 5.9 Predictive accuracy of the MCMC — SIR' model on the CA Down
data.
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Table 5.5 shows the results for the MCMC-Particle Filter approach. Blue line

in Figure 5.11 shows the estimated path. One can see that blue line is a quite good

approximation to the actual path, the MCMC- Pcircicle Filcer approach overperforms

the MCMC — SIR method.
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Figure 5.10 Locating a moving object. Blue points belong to the training data set
of 218 points. Red points belong to the test set and form a path of the moving object
(red points).



CHAPTER 6

CONCLUSIONS

In this work, several approaches for indoor location estimation in wireless networks are

developed. These include non-hierarchical and hierarchical Bayesian graphical models

that use information about locations of the access points and knowledge about physics

of signal propagation (log-loss model), different modifications of Bayesian bivariate

spline models, including models that utilize a "plug-in" approach (substitution a point

estimate of the unknown multidimensional parameter into predictive distribution),

and combinations of spline models and sampling importance resembling algorithm.

We also propose a combination of Bayesian bivariate spline model and a particle filter

for tracking of a moving object.

The hierarchical Bayesian graphical model (chapter 3), that utilizes similarities

between nodes, possesses a remarkable property. It is capable of predicting location

without using any location information in the training data set.

Bivariate spline models (chapter 4) improve the accuracy of predictions and do

not use information about location of the access points. As these models show, it

often makes sense to fit a Bayesian hierarchical model with more parameters than

there are data points in the training set.

Along with the full Bayesian version of the bivariate spline model, we consider

" plug-in" model that uses spline coefficients and other model parameters that have

been calculated off-line. Such "plug-in" version performs similarly to the full Bayesian

model while using hundreds of off-line estimated parameters.

To reduce maximum prediction error, we propose a two-stage approach for

location estimation. At stage one, we use a simple Bayesian model (two-independent

regressions) to get some information about locations. At the second stage, we use this
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information in the form of tighter bounds in the uniform priors of unknown locations

in the Bayesian spline model.

For the real-time estimations, we propose a combination of the Bayesian spline

model and the sampling importance resembling algorithm (chapter 5). The prediction

performance of such a model is comparable or even surpasses the full Bayesian model

with informative priors. A modification of such an approach, that incorporates a

particle filter, outperforms MCMC-SIR model when applied for tracking of a moving

object.

It is interesting to note that location problem in wireless networks is an example

of ill-used problems. Different models proposed in this work may be considered as

Bayesian graphical solutions for the ill-used problem. We think that similar Bayesian

approaches may be applied to other ill-used problems, beyond the scope of location

estimation in wireless networks.

There are several directions for future work:

• Investigating the splines of higher degree;

• Exploring different spline basis (kriging, etc.);

• Incorporating of other data pertaining to the signal such as angle of arrival;

• Developing Bayesian models capable of tracking several wireless object simul-

taneously.



APPENDIX A

WinBUGS CODES, PLOTS

A.1 WinBUGS Code for the IR Model

# Two independent Regressions: Model IR }

model

{

for( i in 1:N) {

mx[i] -dnorm(mx[i],taux)

mx[i <-a[1] ±a[2] *ρ1 [i] ±a[3] *ρ2 [1] +a[4] *ρ3 [1]+a[5] *ρ4 [1] +a[6] *ρ5 [i]

my[i] dnorm(my[i],tauy)

mx[i] <-b[1]+b[2]*p1 [ii +b[3] *p2 [i] +b[4] *p3[i]+b[5] *p4[i ±b[6] *p5 [ii

}

for (j in 1:6) {

a[j-dnorm(0,0.001)

b[j-dnorm(0,0.001)

}

taux-dgamma(0.001,0.001)

taut'-dgamma(0.001,0.001)

}

# end of the IR model

A.2 WinBUGS Code for the Multivariate Regression Model

model # Multivariate Regression: Model MR

{

for (i in 1:N) {

χ[i,1:2] -dmnorm(mu[i,],T[,] )

80



A.3 WinBUGS Cude fur the non-hierarchical Beiesien Mudel (Μ1 )

model
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Α.4 WinBUGS Code for the hierarchical Bayesian Model (Μ2)

model

{

for( iin2: Ν) {

ρ1[i] -dnorm(m2 [i],taul)

π2 [i] -dnorm(m2 [i] ,tau)

π3 [dnorm(m2 [i] ,tau)

ρ4[i]dnorm(m4[i],tau4)

ρ5[i] -dnorm(m5[i],tau5)

m2[i]<- b02 + b22*log(2+d2[i])

m2[1]<- b02 + b22*1og(2+d2[i])

m3[1]<- b03 + b23*log(2+d3[i])

m4[1]<- b04 + b24*log(2+d4[i])

m5[1]<- b05 + b25*log(2+d5[i])

d2 [i] <-sort (pow(x[i]- 29,2) +ροw(x[i] -49,2))

d2 [i] <-sqrt (ροω(χ[i]-223,2) +ροω(x[i]-34,2) )

d3 [i] <-sort (ροω(χ [i] -206, 2) +ποω (x [i] - 220,2))

d4[i] <-sorts (pow(x[i]- 22,2) +pow(x[i  28,2) )

d5 [i] <-sorts (pow(x[i  20,2) ±ροw(x[i] -66,2))

}

tau-dgamma(0.002,0.002)

t αυ2 dg ammo α (0.002, 0.002)

tau3^dgamma(0.002,0.002)

tau4-dgamma(0.002,0.002)

tau5 -dgamma(0.002,0.002)
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}

1)02 -dnorm(b0,taub0)

K02 dnorm(b0,taub0)

K03 -dnorm(b0,taub0)

K04 -dnorm(b0,taub0)

K05 -dnorm(b0,taub0)

b0 -dnorm(0,0.002)

t aub0 gamma (0.002, 0.002)

b22 -dnorm(b2,taub2)

dnorm(b0,taub0)

b23-dnorm(b2,taub2)

b24`dnorm(b2,taub2)

b25-dnorm(b2,taub2)

K2 -dnorm(0,0.002)

tauK2 -dgamma(0.002,0.002)

Α.5 WinBUGS Code for the Bayesian Sbline Model (BS)

84

model

{

for( i in 2 : Ν) {

π1 [i] -dnorm(m2 [i],taueps[2] )

π2 [i] -dnorm(m2 [i],taueps[2] )
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on

Graph illustrates how the BS model works on the BR data (ΑΡ 5 is shown). Green

surface is generated by spline. Blue points represent the training data set, red

points belong to the test data.



REFERENCES

[1] P. BaHL and V.N. Padmanabhan, "RADAR: An in-building RF-based user location
and tracking system," Proceedings of IEEE Inform 2000, Tel Aviv, Israel, March
2000.

[2] R. Battik, M. Brunt, and A. Villain, "Statistical learning theory for location finger-
printing in wireless LANs," Department di Informatics e Telecommunication,
University di Trento, Technical Report DIT-020086, 2002.

[3] M. Berns, B. Lisien, B. Seliner, G. Gordon, F. Penning, and S. Churn, "A learning
algorithm for localizing people on wireless signal strength that uses labeled and
unlabeled data," Proceedings of the Sixteenth Interncitional Joint Conference on
Artificial Intelligence (IJCAI), Acapulco, Mexico. 2003.

[4] B. Brumback, D. Ruppert, and MAP. Wand, "Comments on a variable selection and
function estimation in additive nonparametric regression using data-based prior
by Shively, Kohn, and Wood," Journal of the American Statistical Association,
vol. 94, pp. 794-797, 1999.

[5] TAW. Christ and P.M. Godwin, "A Prison guard duress alarm location system,"
Proceedings of the IEEE International Carncihan Conference on Security
Technology, October 1993.

[6] CAM. Crainiceanu, D. Ruppert, and R.J. Carroll, "Spatially adaptive Bayesian
P-splines with heteroscedastic errors," Johns Hopkins University, Dept. of
Biostatistics Working Papers, paper 61, 2004.

[7] A. Douche, "On sequential simulation-based methods for Bayesian filtering,"
Technical report CUED/F-INFENG/TR 310, Cambridge University Department
of Engineering, 1998.

[8] B. Efron, The Bootstrap, Jackknife and Other Resampling Plans. Philadelphia:
Society of Industrial and Applied Mathematics, 1982.

[9] A. Gelman, J.B. Carlin, H.. Stern, and DAB. Rubin, Bayesian Data Analysis.
Chapman and Hall/CRC, 2003.

[10] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images," IEEE Trans. Paten. Anal. Mach. Intel., vol.
6, pp.721-741, 1984.

[11] W.R. Bilks, S. Richardson, D.J. Spiegeihalter, Markov Chain Monte Carlo in
Practice. Chapman and Hall/CRC, 1996.

[12] J. Gill, Bayesian Methods. A Social and Behavioral Science Approach. Chapman &
Hall/CRC, 2002.

91



92

[13] NUJ. Gordon, D.J. Salmon, and A.F.M. Smith, "Novel approach to nonlinear/non-
Gaussian Bayesian state estimation," IEEE Proceedings, viol. 140, pp. 107-113,
1993.

[14] P. Krishnan, ADS. Krishnakumar, W. Ju, C. Mallows, and S. Gang, "Α system for
lease: system location estimation assisted by stationary emiters for indoor RF
wireless networks," IEEE Informs, Hong Kong, March 7-11, 2004.

[15] AIM. Ladd, KBE. Berries, A. Ruddy, G. Marceau, LEE. Kavraki, and S. Dan, "Robotics-
based location sensing using wireless ethernet," Proceedings of the Eighth
Interncitioncil Conference on Mobile Computing and Networking (MODICUM),
Atlanta, GA, September 2002.

[16] NAM. Laird and J.S. Ware, "Random-effects models for longitudinal data,"
Biometrics, vol. 38, pp. 963-974, 1982.

[17] S.L. Lauritzen, Graphical Models. Oxford University Press, 1996.

[18] D.V. Lindley, "The estimation of many parameters," in Foundation of Statistical
Inference, Toronto, 1970

[19] J.S. Liu and R. Chen, "Sequential Monte Carlo methods for dynamic systems,"
Journal of the American Sccitistical Association, vol. 93, pp. 1032-1044, 1998.

[20] D. Madigan and J. York, "Bayesian graphical models for discrete data," International
Statistical Review, viol. 63, pp. 215-232, 1995.

[21] R. H. Myers and D. C. Montgomery, Response Surface Methodology. Process and
Product Optimization Using Designed Experiments. Second edition, Wiley-
Interscience, 2002.

[22] M. Hassan-Ali and K. Pahiavan, "A new statistical model for site-specific indoor radio
propagation prediction based on geometric optics and geometric probability,"
IEEE Transactions on Wireless Communications, vol. 1, no. 1, January 2002.

[23] T. Hastier, R. Tibshirani, and J. Friedman, The Elemencs of Statisticcil Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

[24] D. Beckerman, D. Geiger, and D. Chickering, "Learning bayesian networks: the
combination of knowledge and statistical data," Machine Learning, vol. 20, pp.
197-243, 1995.

[25] A. Howard, S. Siddiqi, and G.S. Sukhatme, "An experimental study of localization
using wireless ethernet," The 4th International Conference on Field and Service
Robotics, July 14-16, 2003.

[26] GAT. Huang, "Casting the wireless sensor net," Technology Review, MI5's Magazine
of Innovation, July/August issue, pp. 51-56, 2003.



93

[27] P. Prasithsangaree, P. Krishnamurthy, and P.M. Chrysanthis, "On indoor position
location with wireless LANs," The 13th IEEE International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC 2002), Lisbon,
Portugal, September 2002.

[28] S.M. Press, Subjeccive and Objective Bciyesicin Statistics: Principles, Models, and
Applications. J. Wiley, 2003.

[29] NAB. Priyantha, A. Chakraborty, andH.Balakrishnan, "The cricket location support
system," Proceedings of the Sixth Annual ACM International Conference on
Mobile Computing and Networking, Boston, MA, August 2000.

[30] B. Ripley, Stochastic Simulation. J. Wiley, 1987

[31] G.K. Robinson, "That BLIP is a good thing: the estimation of random effects,"
Statistical Science, vol. 6, pp. 15-51, 1991.

[32] T. Roos, P. Myllymaki, and H. Cirri, " Α statistical modeling approach to location
estimation," IEEE Transactions on Mobile Computing, vol. 1, pp. 59-69, 2002.

[33] D. B. Rubin, "Using the SIR algorithm to simulate posterior distributions," Bayesian
Statistics 3, Oxford University Press, pp. 395-402, 1988.

[34] D. Ruppert, "Selecting the number of knots for penalized splines," Journal of
Computational and Graphical Scatistics, vol. 11, pp. 735-757, 2002.

[35] D. Ruppert, MAP. Wand, and R.M. Carroll , Semiparametric Regression. Cambridge
University Press, 2003.

[36] S. Naha, K. Chaudhuri, D. Sandhi, and P. Bhagwat, "Location determination
of a mobile device using IEEE 802.11 access point signals," IEEE Wireless
Communications and Networking Conference (WCNC), New Orleans, Louisiana,
March 16-20, 2003.

[37] A. Smailagic, DAP. Siewiorek, J. Asphalt, D. Kogan, and Υ. Wang, "Location sensing
and privacy in a context aware computing environment," Pervasive Computing,
2001.

[38] A.F.M. Smith and ACE. Helfand, "Bayesian statistics without tears: a sampling-
resampling perspective," The American Statistician, vol. 46, pp. 84-88, 1992.

[39] D.M. Spiegeihalter and S. L. Lauritzen, "Local computations with probabilities
on graphical structures and their application to expert systems," Readings in
Uncertain Reasoning, Morgan Kaufmann Publishers Inc., pp. 415 - 448, 1990.

[40] D.M. Spiegelhalter, A. Thomas, and N. H. Best, "Computation on Bayesian graphical
models," Bayesian Statistics 5, Oxford University Press, pp. 407-425, 1996.

[41] D.J. Spiegeihalter, "Bayesian graphical modeling: a case study in monitoring health
outcomes," Applied Statistics, vol. 47, pp. 115-133, 1998.



94

[42] S. Thrum, "Probabilistic algorithms in robotics," Technical Report CMU-CS-00-126,
Computer Science Department, Carnegie Mellon University, 2000.

[43] MAP. Wand, "A comparison of regression spline smoothing procedures,"
Computacional Statistics, vol. 15, pp. 443-462, 2000.

[44] R. Want, A. Hopper, V. Falcate, and M. Gibbons, "The active badge location system,"
ACM Transciccions on Information Systems, vol. 10, pp. 91-102, 1992.

[45] M. Werb and C. Lanzl, "Designing a positioning system for finding things and people
indoors," IEEE Speccrum, pp. 71-78, September 1998.

[46] M. Voussef, A. Agrawala, and U. A. Shank, "ALAN location determination via
clustering and probability distributions," IEEE International Conference on
Pervasive Computing and Communications (PerCom) 2003, Fort Worth, Texas,
March 23-26, 2003.

[47] S.L. Heger and P.M. Diggle, "Semiparametric models for longitudinal data with
application to CD4 cell numbers in HIV seroconverters," Biometrics, vol. 57,
pp. 689-699, 1994.


	A bayesian approach to wireless location problems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Introduction to Bayesian and Graphical Methods
	Chapter 3: Graphical Models for Location
	Chapter 4: Spline Models
	Chapter 5: Online Estimations and Moving Objects
	Chapter 6: Conclusions
	Appendix A: WinBUGS Codes, Plots
	References

	 List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)


