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Abstract: We present a Bayesian hierarchical model for indoor location estimation

in wireless networks. We demonstrate that our model achieves accuracy that is

similar to other published models and algorithms. By harnessing prior knowledge,

our model drastically reduces the requirement for training data as compared with

existing approaches.
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1. Introduction

The growth of wireless networking has generated commercial and research

interest in statistical methods to track people and things. Inside stores, hospitals,

warehouses and factories, where Global Positioning System devices generally do

not work, Indoor Positioning Systems (IPS) aim to provide location estimates

for wireless devices such as laptop computers, handheld devices and electronic

badges. The proliferation of “Wi-Fi” (IEEE 802.11b) wireless internet access

in cafes, college campuses, airports, hotels, and homes has generated particular

interest in indoor positioning systems that utilize physical attributes of Wi-Fi sig-

nals. Typical applications include tracking equipment and personnel in hospitals,

providing location-specific information in supermarkets, museums and libraries,

and location-based access control.

In a standard Wi-Fi setup, one or more access points serve end-users. In what

follows we focus on networks with multiple access points (typical of networks in

office buildings or large public spaces). Wi-Fi location estimation can employ one

or more of several physical attributes of the medium. Typical features include re-

ceived signal strength (RSS) from the access points, the angle of arrival of the sig-

nal, and the time difference of arrival. Among these, RSS is the only feature that

reasonably priced hardware can currently measure. There exists a substantial

literature on using RSS for location estimation in wireless networks − see, for ex-

ample, Bahl and Padmanabhan (2000), Ladd, Bekris, Rudys, Marceau, Kavraki
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and Dan, (2002) and Roos, Myllymaki and Tirri (2002). Related websites include

www.ekahau.com, www.bluesoft-inc.com and www.newburynetworks.com. In a

laboratory setting, RSS decays linearly with log distance and a simple triangu-

lation using RSS from three access points can uniquely identify a location in a

two-dimensional space. In practice, physical characteristics of a building such as

walls, elevators, and furniture, as well as human activity, add significant noise to

RSS measurements. Consequently statistical approaches to location estimation

prevail.

The standard approach uses supervised learning techniques. The training

data comprise vectors of signal strengths, one for each of a collection of known

locations. The dimension of each vector equals the number of access points. The

corresponding location could be one-dimensional (e.g., location on a long airport

corridor), two-dimensional (e.g., location on one floor of a museum), or three-

dimensional (e.g., location within a multi-storey office building). Collection of

the location data is labor intensive, requiring physical distance measurements

with respect to a reference object such as a wall. The model building phase

then learns a predictive model that maps signal strength vectors to locations.

Researchers have applied many supervised learning methods to this problem, in-

cluding nearest neighbor methods, support vector machines, and assorted prob-

abilistic techniques. In this paper we explore the use of hierarchical Bayesian

graphical models (Spiegelhalter (1998) and Gelman, Carlin, Stern and Rubin

(2003)) for wireless location. Our objective is to use the hierarchical Bayesian

framework to incorporate important prior information and the graphical model

framework to facilitate the construction of realistically complex models.

Gathering extensive training data and the requisite physical measures of loca-

tion (“profiling”) involves a steep upfront cost and deployment effort (Smailagic,

Siewiorek, Anhalt, Kogan and Wang (2001)). Furthermore, even in normal office

environments, changing environmental, building, and occupancy conditions can

affect signal propagation and require repeated data gathering to maintain pre-

dictive accuracy (Bahl, Padmanabhan and Balachandran (2000)). Consequently,

minimizing the number of training observations needed to adequately profile a

particular site is an important objective. Similarly we seek to minimize data

requirements concerning internal wall materials, flooring, occupancy, etc.

Two types of location estimation systems exist. In a client-based deployment,

the client measures the signal strengths as seen by it from various access points.

The client uses this information to locate itself. The cost to an enterprise for such

deployments is the cost of profiling the site, building the model, and maintaining

the model. In an infrastructure-based deployment, the administrator deploys

so-called sniffing devices that monitor the signal strength from clients. The cost

to enterprises in such deployments is the typically modest cost of deploying the
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necessary hardware and software, and the time and effort to build and maintain

the model (if it is not completely automated).

Our key finding is that a hierarchical Bayesian approach, incorporating prior

physical knowledge about the nature of Wi-Fi signals, can provide accurate lo-

cation estimates without any location information in the training data. In the

context of an infrastructure-based deployment, our proposed model can thus

eliminate profiling entirely.

Section 2 provides some additional background. Our approach uses proba-

bilistic graphical models and Section 3 provides describes the framework we use.

Sections 4 and 5 describe the datasets we used for experimentation as well as

various results. Section 6 describes some potential future work.

We focus on static location estimation. That is, we consider models that

estimate location at a particular timepoint and we do not attempt to track moving

objects. In a companion paper we will describe extensions to dynamic tracking

models.

2. Background

2.1. Related Work

Location estimation techniques in wireless networks can be broadly classi-

fied based on the methods used to build models and methods used to search the

models in the online phase. For building models, most techniques profile the

entire site and collect one or more signal strength samples from all visible access

points at each sample point. Each point is mapped to either a signal strength

vector (Bahl and Padmanabhan (2000), Ladd et al. (2002), Prasithsangaree, Kr-

ishnamurthy and Chrysanthis (2002) and Saha, Chaudhuri, Sanghi and Bhagwat

(2003) or a signal strength probability distribution (Battiti, Brunato and Vil-

lani (2002), Roos et al. (2002), Thrun (2000) and Youssef, Agrawala and Udaya

Shankar (2003)). Such profiling techniques require considerable investment in

data gathering. Alternatively, a parametric model that uses signal propagation

physics and calculates signal degradation based on a detailed map of the build-

ing, the walls, obstructions and their construction material, has been proposed

(Bahl and Padmanabhan (2000)). Obtaining detailed maps of the building and

its changes over time is, however, a hurdle that needs to be overcome for the use

of this method.

In Smailagic et al. (2001), the authors emphasize a client-based location

model and raise interesting privacy issues in location-based services. We ex-

pect that in enterprises, based on current privacy policies used for other elec-

tronic transmissions like email and web-access, the preference would be for an

infrastructure-based solution. If privacy is desired, in our case, on entering a
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site a client device could download the model for that site and use it to deter-
mine its own location. As mentioned in Smailagic et al. (2001), client-based
approaches must also be concerned about the power requirements on the client
devices that are inherently power constrained. Sniffing for clients to provide an
infrastructure-based system has also been proposed (Christ and Godwin (1993),
Want et al. (1992) and Werb and Lanzl (1998)).

Custom sensors have been used for location estimation in other interesting
ways (Priyantha, Chakraborty and Balakrishnan (2000), Want et al. (1992) and
Werb and Lanzl (1998)). In Want et al. (1992) and similar systems, infra-red (IR)
wireless technology is used; IR technology has limited range and hence has not
become very popular. In Priyantha et al. (2000), a decentralized (client-based)
approach using time difference of arrival between ultrasound and RF signals from
custom sensors is used for location estimation. The system in Werb and Lanzl
(1998) uses expensive custom RF-based hardware for location estimation, and
an approach based on time difference of signal arrival, which is inherently more
expensive to measure. In contrast, our approach is easier to bootstrap, is based
on RSS and can be built with off-the-shelf components. Recent advances in
sensor technology (Huang (2003)) and projected decreases in the manufacturing
cost allow us to provide a cost-effective solution.

2.2. Radio frequency signal propagation in wireless ethernet

Ladd et al. (2002) provide an introduction to the behavior of Wi-Fi signals
and here we present a brief summary. The IEEE 802.11b High-Rate standard
uses radio frequencies in the 2.4 GHz band. Wi-Fi adaptors use spread-spectrum
technology that spreads the signal over several frequencies. In this way, interfer-
ence on a single frequency does not entirely block the signal. The signal itself
propagates in a complex manner (Hassan-Ali and Pahlavan (2002)). Reflection,
absorption, and diffraction occur when the signal’s waves encounter opaque ob-
stacles resulting in essentially random variations of signal strength. A variety
of other factors such as noise, interference from other sources, and interference
between channels also affect the signal. The resonant frequency of water hap-
pens to be 2.4 GHz so people also absorb the radio waves and impact the signal
strength. Other common devices using the 2.4 GHz band include microwave
ovens, BlueTooth devices and 2.4 GHz cordless phones.

The consequence of all this is that received signal strength varies over time
at a single location and varies across different locations. However, signal profiles
corresponding to spatially adjacent locations are similar, as the various external
variables remain approximately the same over short distances. Furthermore,
the local average of the signal strength varies slowly over time and the signal
strength decays approximately in proportion to log distance (Howard, Siddiqi
and Sukhatme (2003)).
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3. Bayesian Graphical Models

A graphical model is a multivariate statistical model embodying a set of
conditional independence relationships. A graph displays the independence re-
lationships. The vertices of the graph correspond to random variables and the
edges encode the relationships. To date, most graphical models research has
focused on acyclic digraphs, chordal undirected graphs, and chain graphs that

allow both directed and undirected edges, but have no partially directed cycles
(Lauritzen (1996)).

Here we focus on acyclic digraphs (ADGs) with both continuous and cate-
gorical random variables. In an ADG, all the edges are directed and the graph
represents them with arrows (see Figure 1). A directed graph is acyclic if it

contains no cycles. Each vertex in the graph corresponds to a random variable
Xv, v ∈ V taking values in a sample space Xv. To simplify notation, we use v in
place of Xv in what follows. In an ADG, the parents of a vertex v, pa(v), are
those vertices from which vertices point into v. The descendants of a vertex v

are the vertices which are reachable from v along a directed path. A vertex w is

a child of v if there is an edge from v to w. The parents of v are taken to the be
the only direct influences on v, so that v is independent of its non-descendants
given its parents. This property implies a factorization of the joint density of
Xv, v ∈ V , which we denote by p(V ), given by

p(V ) =
∏

v∈V

p(v|pa(v)). (1)

� � �
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Figure 1. A simple acyclic directed graphical model.

Figure 1 shows a simple example. This directed graph represent the assump-

tion that Xγ and Xα are conditionally independent given Xβ . The joint density
of the three variables factors accordingly as p(Xα, Xβ , Xγ) = p(Xα)p(Xβ |Xα)
p(Xγ |Xβ).

For graphical models where all variables are discrete, Spiegelhalter and Lau-
ritzen (1990) presented a Bayesian analysis and showed how independent Dirich-

let prior distributions can be updated locally to form posterior distributions as
data arrive. Heckerman, Geiger, and Chickering (1995) provided corresponding
closed-form expressions for complete-data likelihoods and posterior model prob-
abilities. Madigan and York (1995) described corresponding Bayesian model av-
eraging procedures. In the Bayesian framework, model parameters are random

variables and appear as vertices in the graph.
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When some variables are discrete and others continuous, or when some of

the variables are latent or have missing values, a closed-form Bayesian analysis

generally does not exist. Analysis then requires either analytic approximations of

some kind or simulation methods. Here we consider a Markov chain Monte Carlo

(MCMC) simulation method. Spiegelhalter (1988) provides a brief introduction

to a particular MCMC algorithm, the univariate Gibbs sampler, for Bayesian

graphical models as follows.

The Gibbs sampler starts with some initial values for each unknown quantity

(that is, model parameters, missing values, and latent variables), and then cycles

through the graph simulating each variable v in turn from its conditional prob-

ability distribution, given all the other quantities, denoted V \v, fixed at their

current values (known as the “full conditional”). The simulated v replaces the

old value and the simulation shifts to the next quantity. After sufficient iterations

of the procedure one assumes that the Markov chain has reached its stationary

distribution, and then future simulated values for vertices of interest are moni-

tored. Inferences concerning unknown quantities are then based on data analytic

summaries of these monitored values, such as empirical medians and 95% inter-

vals. Some delicate issues do arise with the Gibbs sampler such as assessment of

convergence, sampling routines, etc. Gilks, Richardson and Spiegelhalter (1996)

provide a full discussion.

The crucial connection between directed graphical models and Gibbs sam-

pling lies in expression (1). The full conditional distribution for any vertex v

is:

p(v|V \v) ∝ p(v, V \v)

∝ terms in p(V ) containing v

= p(v|pa(v))
∏

w∈child(v)

p(w|pa(w)),

i.e., a prior term and a set of likelihood terms, one for each child of v. Thus,

when sampling from the full conditional for v, we need only consider vertices

which are parents, children, or parents of children of v, and we can perform local

computations. The BUGS language and software (Spiegelhalter, Thomas, and

Best (1999)) implements a version of the Gibbs sampler for Bayesian graphical

models. We utilized BUGS for the experiments we report below.

4. Datasets

We collected RSS data from three floors at two sites, referred to in this paper

as BR, CA Up and CA Down. Both the BR and CA sites are office buildings

and have deployed 802.11b wireless networks. Figure 2 shows the floor plans for

the two sites.
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Figure 2. Floor plans for the BR and CA sites showing the access points (APs).

To make our RSS measurements, we used a Linux IPAQ with a modified
driver updated to scan for access points. The IPAQ had a custom client and a
standard Konqueror web browser. The user making RSS measurements clicked
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on current location in an image of the floor as displayed on the browser. The

posting of this information triggered an RSS measurement request at the client

from the web server on a separate TCP channel. The web server then recorded the

coordinate and RSS vector information at that location. We did not specifically

orient the IPAQ in any way while taking measurements.

The BR site has 5 access points and measures 225 ft X 144 ft. We made

254 RSS measurements along the corridors of this site. The measurements were

made over different sessions spanning several days.

The CA Down floor has 4 access points, three of which are colinear, and

measures 250 ft X 175 ft, with a “slice” removed. Due to the colinearity of the

three access points, we installed two temporary access points. The CA Up floor

has 4 access points. At the CA site, a colleague took 146 measurements on the

“Down” floor and 56 measurements on the “Up” floor in the corridors.

5. Models and Experiments

Our goal is to construct a model that embodies extant knowledge about

Wi-Fi signals as well as physical constraints implied by the target building. We

present a series of models of increasing complexity, in each case showing results

with varying training dataset sizes. We focus throughout on predictive accuracy.

5.1. A non-hierarchical Bayesian graphical model

Figure 3 shows a particular graphical model for a two-dimensional location

estimation problem in a building with four access points. In what follows we

refer to this model as M1 (although the number of access points varies).

PSfrag replacements

α
β

γ

X

AP

Temporary AP

Figure 3. A Bayesian graphical model for location estimation. This is model M1.
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The vertices X and Y represent location. The vertex D1 (respectively

D2, D3, and D4) represents the euclidean distance between the location speci-

fied by X and Y and the first (respectively second, third, and fourth) access

point. Since we assume the locations of the access points are known, the Di’s are

deterministic functions of X and Y . The vertex Si represents the signal strength

measured at (X,Y ) with respect to the ith access point, i = 1, . . . , 4. The model

assumes that X and Y are marginally independent.

Specification of the model requires a conditional density for each vertex given

its parents, here taken as follows:

X ∼ uniform(0, L),

Y ∼ uniform(0, B),

Si ∼ N(bi0 + bi1 log Di, τi), i = 1, 2, 3, 4,

bi0 ∼ N(0, 0.001), i = 1, 2, 3, 4,

bi1 ∼ N(0, 0.001), i = 1, 2, 3, 4.

Here L and B denote the length and breadth of the building respectively. The

distributions for X and Y reflect the physical constraints of the building. The

model for Si reflects the fact that signal strength, decays approximately linearly

with log distance. Note that we use N(µ, τ) to denote a Gaussian distribution

with mean µ and precision τ so that the prior distributions for bi0 and bi1 have

large variance.

Figure 4 shows a more compact representation for M1 using the BUGS plate

notation for replicated sub-models, and with d denoting the number of access

points.
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Figure 4. A Bayesian graphical model using plate notation. This is also model M1.
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Figure 5 shows the predictive performance of model M1 on the BR data, as

a function of training set size. Specifically, for each training set size N , we plot

the average performance for 30 replications of a random test-training split, using

N observations for training and one observation for testing. The red solid curve

shows the results for M1. In each case, and throughout the paper, the estimates

resulted from 110,000 MCMC iterations, discarding the first 10,000. This seemed

to provide adequate convergence in most cases, according to standard BUGS di-

agnostics. We return to this issue at the end of the paper. For comparison

purposes, the blue dotted curve shows the equivalent results for the smoothed

nearest-neighbor “SmoothNN” model of Krishnan et al. (2003). The SmoothNN

model proved highly competitive in comparison with two other benchmark sys-

tems and hence we use it for comparison purposes in this paper. Figure 5 shows

that M1 outperforms the SmoothNN model with smaller training sample sizes,

but underperforms the SmoothNN model at the larger sample sizes.
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Figure 5. Average predictive accuracy of the non-hierarchical Bayesian
graphical model M1, the hierarchical model M2, and the SmoothNN model
on the BR data.

Figure 6 provides shows more detail and also shows results for the other two

datasets. The results for the three different datasets are qualitatively similar.
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Tables 1, 2 an 3 provide corresponding summary statistics. Note that predictive

accuracy does tend to improve with training sample size, although not in every

case.
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Figure 6. Predictive accuracy of the SmoothNN model versus the non-

hierarchical Bayesian graphical model (M1) for the BR data, CA Down data

and CA Up Data.

Table 1. Leave-one-out average accuracy in feet for the BR data. Results

are averaged over 30 replications. The corresponding standard errors range

from about 1.5 to 2.5.

Training Sample Size

Model 5 10 20 50 100 253

Bayesian M1 20.1 18.1 15.2 14.7 15.2 14.8

SmoothNN 39.7 18.7 17.5 16.2 12.3 13.0
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Table 2. Leave-one-out average accuracy in feet for the CA Down data.
Results are averaged over 30 replications. The corresponding standard errors
range from about 1.5 to 5.5.

Training Sample Size

Model 5 10 20 50 145

Bayesian M1 28.8 27.4 21.6 18.2 19.9
SmoothNN 46.3 26.7 24.3 17.1 17.4

Table 3. Leave-one-out average accuracy in feet for the CA Up data. Results
are averaged over 30 replications. The corresponding standard errors range
from about 2.7 to 5.7.

Training Sample Size

Model 5 10 20 55

Bayesian M1 35.4 31.7 30.5 28.5

SmoothNN 59.9 36.3 25.2 28.2

5.2. A hierarchical Bayesian graphical model

Next we seek to incorporate the knowledge that the coefficients of the linear

regression models corresponding to each of the access points should be similar

since the similar physical processes are in play at each access point. Physical

differences between locations of the different access points will tend to mitigate

the similarity but nonetheless, borrowing strength across the different regression
models might provide some predictive benefits.

Figure 7 shows the hierarchical model M2. The conditional densities for this

model are

X ∼ uniform(0, L),

Y ∼ uniform(0, B),

Si ∼ N(bi0 + bi1 log Di, τi), i = 1, . . . , d,

bi0 ∼ N(b0, τb0), i = 1, . . . , d,

bi1 ∼ N(b1, τb1), i = 1, . . . , d,

b0 ∼ N(0, 0.001),

b1 ∼ N(0, 0.001),

τb0 ∼ Gamma(0.001, 0.001),

τb1 ∼ Gamma(0.001, 0.001).

The green dashed curve in Figure 5 shows the predictive accuracy of M2 on

the BR data. A comparison of M1 and M2 shows that the hierarchical model

performs similarly to its non-hierarchical counterpart, although M2 does provide

improvement in average error for the smallest training sample size of 5.
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Figure 7. A Bayesian hierarchical graphical model using plate notation. This

is model M2.

Figure 8 provides shows more detail and also shows results for the other

two datasets. Again, the results for the three different datasets are qualitatively

similar. Tables 4, 5 and 6 provide corresponding summary statistics. In general,

the results show small differences between the non-hierarchical model M1 and

the hierarchical model M2.

Table 4. Leave-one-out average accuracy in feet for the BR data. Results

are averaged over 30 replications. The corresponding standard errors range

from about 1.3 to 2.5.

Training Sample Size

Model 5 10 20 50 100 253

Bayesian M1 20.1 18.1 15.2 14.7 15.2 14.8

Bayesian M2 16.8 16.5 17.2 17.3 14.1 13.8

Table 5. Leave-one-out average accuracy in feet for the CA Down data.

Results are averaged over 30 replications. The corresponding standard errors

range from about 1.5 to 7.5.

Training Sample Size

Model 5 10 20 50 145

Bayesian M1 28.8 27.4 21.6 18.2 19.9

Bayesian M2 21.3 26.3 25.0 20.3 18.7
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Table 6. Leave-one-out average accuracy in feet for the CA Up data. Results

are averaged over 30 replications. The corresponding standard errors range

from about 2.7 to 6.8.

Training Sample Size

Model 5 10 20 55

Bayesian M1 35.4 31.7 30.5 28.5

Bayesian M2 30.6 37.9 33.0 33.5
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Figure 8. Predictive accuracy of the non-hierarchical Bayesian graphical

model (M1) versus the hierarchical Bayesian graphical model (M2) for the

BR data, CA Down data and CA Up Data.

5.3. Training data with no location information

Model M2 incorporates two sources of prior knowledge. First, M2 embodies
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the knowledge that signal strength decays approximately linearly with log dis-

tance. Second, the hierarchical portion of M2 reflects prior knowledge that the

different access points behave similarly. Here we pursue the idea that perhaps
this prior knowledge provides sufficient constraints to obviate the need to know

the actual locations of the training data observations. Specifically, the training

data now comprise vectors of signal strengths with unknown locations: X and Y

in M1 and M2 become latent variables.
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Figure 9. Average predictive accuracy of the non-hierarchical Bayesian
graphical model on the BR data with no location data.

Figure 9 shows the average predictive performance for the BR data with

different numbers of random sampled signal strength vectors. In each case the

results shows averages over 30 replications, except for the maximal case (254

for BR, 146 for CA Down, 56 for CA Up) which uses all the signal strength
vectors in the training data. The red solid curve corresponds to M1 and the

green dashed curve to M2. The results for the SmoothNN model are reproduced

from Figure 5 and reflect training data with known locations. These results show

some striking features. With no location information, M1 performs poorly and

shows no improvement with increasing numbers of signal strength vectors. Model

M2, however, from about 10 training vectors onwards, performs almost as well
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as the SmoothNN model trained on data with complete location information for

each signal strength vector.
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Figure 10. Predictive accuracy of the Bayesian graphical model with no

location information. Non-hierarchical model (M1) versus the hierarchical

Bayesian graphical model (M2) for the BR data, CA Down data and CA Up

Data.

Figure 10 provides shows more detail and also shows results for the other two

datasets. Once again, the results for the three different datasets are qualitatively

similar. Tables 7, 8 and 9 provide corresponding summary statistics. In each

case the hierarchical model, even with no location information, provides predic-

tive performance that is close to, although not as good as, the state-of-the-art

SmoothNN model.
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Dropping the location data requirement affords significant practical bene-

fits. As discussed in Section 1, the location measurement process is slow and

human-intensive. By contrast, gathering signal strengths vectors without the

corresponding locations does not require human intervention; in the infrastruc-

ture approach, suitably instrumented access points or sniffing devices can solicit

signal strength measurements from existing Wi-Fi devices and can do this re-

peatedly at essentially no cost.

We note the existing location estimation algorithms that we are aware of all

require location information in the training data to produce any estimates.

Table 7. Average accuracy in feet for the BR data. No location information

in the training data. Results are averaged over 30 replications.

Training Sample Size

Model 5 10 20 50 100 254

Bayesian M1, No Locations 59.5 44.2 97.4 42.9 64.0 129.5

Bayesian M2, No Locations 46.2 20.2 18.3 15.3 15.1 19.0

SmoothNN, With Locations 39.7 18.7 17.5 16.2 12.3 13.0

Table 8. Average accuracy in feet for the CA Down data. No location

information in the training data. Results are averaged over 30 replications.

Sample Size

Model 5 10 20 50 146

Bayesian M1, No Locations 62.6 32.1 54.6 71.9 47.8

Bayesian M2, No Locations 54.4 26.2 27.8 33.3 25.0

SmoothNN, With Locations 46.3 26.7 24.3 17.1 17.4

Table 9. Average accuracy in feet for the CA Up data. No location infor-

mation in the training data. Results are averaged over 30 replications.

Sample Size

Model 5 10 20 56

Bayesian M1, No Locations 61.9 42.9 56.5 140.9

Bayesian M2, No Locations 41.7 40.9 30.6 31.2

SmoothNN, With Locations 59.9 36.3 25.2 28.2

5.4. Incorporating corridor effects and other prior knowledge

The graphical modeling framework coupled with MCMC provides a very

flexible tool for multivariate modeling. Here we pursue two ideas that demon-

strate this flexibility and aim to improve predictive accuracy, especially when the

training data contain no location information.
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Corridor Model

All three datasets show striking corridor effects. That is, when an access

point is located in a corridor, the signal strength tends to be substantially

stronger along the entire corridor. In the three office building floors we have

examined, corridors are mostly parallel to the walls. Hence, a location that

shares either an x-coordinate or a y-coordinate with an access point (at least

approximately) tends to be in the same corridor as that access point.

Figure 11 shows a model (M3) with a corridor effect, Ci. The variable Ci

takes the value 1 if the location (X,Y ) shares a corridor with access point i

and 0 otherwise. We define “sharing a corridor” as having an x- or y-coordinate

within three feet of the corresponding access point coordinate. Since corridor

width varies from building to building, this definition should vary accordingly,

although we do not pursue this here.
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Figure 11. An extension of M2 to include a corridor main effect. This is model M3.

The conditional densities for model M3 are

X ∼ uniform(0, L),

Y ∼ uniform(0, B),

Si ∼ N(bi0 + bi1 log Di + bi2Ci + bi3CiDi, τi), i = 1, . . . , d,

bij ∼ N(bj , τbj), i = 1, . . . , d, j = 0, 1, 2, 3,

bj ∼ N(0, 0.001), j = 0, 1, 2, 3,

τbj ∼ Gamma(0.001, 0.001), j = 0, 1, 2, 3.
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Note we have included a corridor main effect as well as a corridor-distance

interaction term. Figure 12 shows the results with various (labeled) training

sample sizes. Tables 10, 11 and 12 provide more details.

Table 10. Leave-one-out average accuracy in feet for the BR data. Results

are averaged over 30 replications. The corresponding standard errors range

from about 1.4 to 7.5. “M,” “I,” and “B” refer to model M3 with main effect

only, interaction only, and both main effect and interaction, respectively.

Training Sample Size

Model 5 10 20 50 100 253

Bayesian M2 16.8 16.5 17.2 17.3 14.1 13.8

Bayesian MM
3 17.0 16.8 17.9 15.9 12.9 14.4

Bayesian M I
3 19.5 18.2 15.9 18.0 15.2 15.6

Bayesian MB
3 20.0 16.5 12.3 13.6 14.0 15.6

Table 11. Leave-one-out average accuracy in feet for the CA Down data.

Results are averaged over 30 replications. The corresponding standard errors

range from about 1.5 to 9.1. “M,” “I,” and “B” refer to model M3 with

main effect only, interaction only, and both main effect and interaction,

respectively.

Training Sample Size

Model 5 10 20 50 145

Bayesian M2 21.3 26.3 25.0 20.3 18.7

Bayesian MM
3 20.8 17.5 17.4 16.9 18.3

Bayesian M I
3 23.2 22.4 15.4 20.9 17.5

Bayesian MB
3 24.4 25.0 17.4 41.7 31.9

Table 12. Leave-one-out average accuracy in feet for the CA Up data. Re-

sults are averaged over 30 replications. The corresponding standard errors

range from about 2.7 to 6.8. “M,” “I,” and “B” refer to model M3 with

main effect only, interaction only, and both main effect and interaction, re-

spectively.

Training Sample Size

Model 5 10 20 55

Bayesian M2 30.6 37.9 33.0 33.5

Bayesian MM
3 31.8 34.2 31.4 32.5

Bayesian M I
3 35.7 28.8 31.4 34.7

Bayesian MB
3 36.6 32.0 31.7 30.0
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Figure 12. Predictive accuracy of the hierarchical Bayesian graphical model

(M2) versus the hierarchical Bayesian graphical model with corridor effects

(M3) for the BR data, CA Down data and CA Up Data. “N” corresponds

to no corridor effect and is the same as M2. “M,” “I,” and “B” correspond

to model M3 with main effect only, interaction only, and both main effect

and interaction, respectively.

Figure 13, Tables 13, 14 and 15 provide corresponding results with no loca-

tion information.

These analyses suggest that our particular approach to modeling a corridor

effect does not improve predictive performance.

Informative Priors for the Regression Coefficients

A second direction we considered was the incorporation of mildly infor-

mative prior distributions for the regression coefficients. Specifically, we used a



LOCATION ESTIMATION IN WIRELESS NETWORKS 515

Table 13. Average accuracy in feet for the BR data. No location information.
Results are averaged over 30 replications. The corresponding standard errors
range from about 1.9 to 4.5. “M,” “I,” and “B” refer to model M3 with
main effect only, interaction only, and both main effect and interaction,
respectively.

Training Sample Size

Model 5 10 20 50 100 254

Bayesian M2, No Locations 46.2 20.2 18.3 15.3 15.1 19.0

Bayesian MM
3 , No Locations 29.1 20.4 17.5 15.9 15.6 17.6

Bayesian M I
3 , No Locations 34.1 18.2 17,7 16.1 15.5 16.3

Bayesian MB
3 , No Locations 34.4 26.1 20.3 21.4 16.9 14.4
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Figure 13. Predictive accuracy of the hierarchical Bayesian graphical model
(M2) versus the hierarchical Bayesian graphical model with corridor effects
(M3) for the BR data, CA Down data and CA Up Data. No location infor-
mation. “N” corresponds to no corridor effect and is the same as M2. “M,”
“I,” and “B” correspond to model M3 with main effect only, interaction only,
and both main effect and interaction, respectively.
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Table 14. Average accuracy in feet for the CA Down data. No location

information. Results are averaged over 30 replications. The corresponding
standard errors range from about 2.1 to 10.8. “M,” “I,” and “B” refer to

model M3 with main effect only, interaction only, and both main effect and

interaction, respectively.

Training Sample Size

Model 5 10 20 50 146

Bayesian M2, No Locations 23.9 29.4 29.2 29.8 21.9

Bayesian MM
3 , No Locations 29.8 29.9 24.7 26.5 34.2

Bayesian M I
3 , No Locations 29.1 25.0 25.9 32.7 33.4

Bayesian MB
3 , No Locations 30.0 38.9 25.6 32.1 27.1

Table 15. Average accuracy in feet for the CA Up data. No location in-

formation. Results are averaged over 30 replications. The corresponding

standard errors range from about 3.4 to 36.8. “M,” “I,” and “B” refer to
model M3 with main effect only, interaction only, and both main effect and

interaction, respectively.

Training Sample Size

Model 5 10 20 55

Bayesian M2, No Locations 63.6 38.1 28.9 30.6

Bayesian MM
3 , No Locations 28.5 36.3 31.6 27.1

Bayesian M I
3 , No Locations 46.6 36.2 30.1 27.0

Bayesian MB
3 , No Locations 62.6 32.7 44.7 28.6

N(10, 0.1) prior for b0 and a N(−19.5, 0.1) prior for b1 in Model M2. The means

of these priors correspond to the average intercept and slope from a maximum

likelihood analysis of the combined data over all access points from all three

locations. The precisions of 0.1 permit considerable posterior variability around

these values.

Figure 14 shows the results and Tables 16, 17 and 18 provide more details.

The informative priors do provide improved predictive performance, especially

for the experiments with no location data and small numbers of signal strength

vectors.

Table 16. Leave-one-out average accuracy in feet for the BR data. Results
are averaged over 10 replications.

Training Sample Size

Model 5 10 20 50 100 253

Bayesian M2 16.8 16.5 17.2 17.3 14.1 13.8

Bayesian M
Inf
2 13.8 19.2 18.2 15.3 15.2 17.5
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Table 17. Leave-one-out average accuracy in feet for the CA Down data.
Results are averaged over 10 replications.

Training Sample Size

Model 5 10 20 50 145

Bayesian M2 21.3 26.3 25.0 20.3 18.7

Bayesian M
Inf
2 19.4 25.4 24.3 30.8 34.0

Table 18. Leave-one-out average accuracy in feet for the CA Up data. Re-
sults are averaged over 10 replications.

Training Sample Size

Model 5 10 20 55

Bayesian M2 30.6 37.9 33.0 33.5

Bayesian M
Inf
2 29.3 29.4 33.4 31.3
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ors, CA Down data and CA Up Data.
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Figure 15, Tables 19, 20 and 21 provide corresponding results for training

data with no location information.
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Figure 15. Predictive accuracy of the hierarchical Bayesian graphical model

(M2) versus the hierarchical Bayesian graphical model with informative pri-

ors and No Location Information, BR data, CA Down data and CA Up

data.

Table 19. Leave-one-out average accuracy in feet for the BR data. No

Location Information. Results are averaged over 30 replications. The corre-

sponding standard errors range from about 1.3 to 2.5.

Training Sample Size

Model 5 10 20 50 100 254

Bayesian M2, No Locations 46.2 20.2 18.3 15.3 15.1 19.0

Bayesian M
Inf
2 , No Locations 18.8 14.2 13.7 15.7 12.2 13.7
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Table 20. Leave-one-out average accuracy in feet for the CA Down data.
No Location Information. Results are averaged over 30 replications. The
corresponding standard errors range from about 1.5 to 9.1.

Training Sample Size

Model 5 10 20 50 146

Bayesian M2, No Locations 23.9 29.4 29.2 29.8 21.9

Bayesian M
Inf
2 , No Locations 18.0 31.8 18.0 22.4 20.0

Table 21. Leave-one-out average accuracy in feet for the CA Up data. No
Location Information. Results are averaged over 30 replications. The corre-
sponding standard errors range from about 2.7 to 6.8.

Training Sample Size

Model 5 10 20 56

Bayesian M2, No Locations 63.6 38.1 28.9 30.6.5

Bayesian M
Inf
2 , No Locations 28.5 35.7 26.1 30.3

6. Future Work

Several directions for future work suggest themselves. In the first instance,

we will explore several generalizations of the current model to include the follow-

ing.

• Piecewise linear or spline-based models for the core signal strength-log dis-

tance relationship. The data show some evidence of non-linearity, especially

at shorter distances. In particular we will explore the transformation selection

algorithm of Hoeting, Raftery, and Madigan (2002).

• Models that can incorporate approximate location information. For example,

when sensors are attached to wireline telephones, the room location may be

available but not the location of the sensor within the room.

• Extensions of the corridor effects we discussed above to include more detailed

information concerning wall locations as well as locations of potentially inter-

fering objects such as elevators, kitchens, printers, etc.

• Incorporation of other data pertaining to the signal, such as angle of arrival.

Currently Markov chain Monte Carlo algorithms estimate the parameters

and produce location estimates. For real-time or for larger-scale applications

such simulation-based approaches may prove impractical and we will explore

alternatives. In particular, variational approximations (see, for example, Jaakola

and Jordan (2000)) may prove useful.

Since our experiments involve multiple test-training splits, manual MCMC

convergence checking is not possible. We carried out several runs of 1,000,000

iterations for a few of the models and observed that predictive performance did
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not improve. Nonetheless, some more systematic, automated approach to con-

vergence diagnostics would be more satisfactory.

A major future thrust of our work will be to extend the current model to

dynamic tracking applications. Such applications may begin with a known loca-

tion (e.g., a location where a user takes a wireless device off a power rack) or not.

In either case, the model will assume that the true location varies smoothly over

time according to a low-order hidden stochastic process. Robotics has stimulated

prior work in this direction and Monte Carlo algorithms for such applications ex-

ist. Work on so-called “particle filters” is relevant − see, for example, Thrun

(2000), Gilks and Berzuini (2001) and Ridgeway and Madigan (2003). Again,

alternatives to simulation such as online EM algorithms or quasi-Bayes (Opper

(1998)) procedures may prove necessary.
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