513 research outputs found
Does trajectory matter? A study looking into the relationship of trajectory with target engagement and error accommodation in subthalamic nucleus deep brain stimulation
Background: STN-DBS is now a key treatment choice for advanced Parkinson’s disease. The optimum target area within the STN is well established. However, no emphasis on the impact of trajectory exists. The ellipsoid shape of the STN and the off-centre traditional target point mean that variation in the electrode inclination should affect STN engagement. Understanding of this relationship could inform trajectory selection during planning by improving STN engagements and margins for error.
Methods: We simulated electrode placement at the clinical target through a set of trial trajectories. Twelve 3D-reconstructed STNs were created from MRI data of 6 patients. An appropriate target within each STN was then chosen. Each STN was approached through 56 simulated trajectories arranged in a grid covering a quadrant of skull around and in front of the coronal suture. A subset of 20 viable trajectories was reassessed for depth of engagement in each STN whilst approaching the chosen target.
Results: Group averages for each trajectory are presented as traffic light maps and as an overlaid skull mask illustrating recommended electrode entry sites. Trajectories under 30 degrees anterior to the bregma and between 10 to 30 degrees off the midline accommodated over 2.4 degrees of wobble. A mean engagement of 6 mm was possible in half of the subset. The longest engagements are on trajectories which saddle the coronal suture, extending to 40 degrees lateral. Microelectrode tracts of 14 additional STNs were collated using above protocol and engagement exceeded 5 mm in all central trajectories without capsular side effects, suggesting placement away from STN borders.
Conclusions: Trajectory selection influences engagement and flexibility to accommodate electrode wobble or brain shift whilst approaching a chosen STN target. We recommend having the first trial trajectory 20 degrees anterior to the bregma, moving postero-laterally in successive trials to balance both error and engagement. When wider margins for error are beneficial (e.g. second side during bilateral procedures), trajectories nearer the coronal suture and around 25 degrees off the midline are advised
Recommended from our members
Telemedicine for Outpatient Neurosurgical Oncology Care: Lessons Learned for the Future During the COVID-19 Pandemic.
The coronavirus 2019 (COVD-19) pandemic has drastically disrupted the delivery of neurosurgical care, especially for the already at-risk neuro-oncology population. The sudden change to clinic visits has rapidly spurned the implementation of telemedicine. A recommendation care paradigm of neuro-oncologic patients limited by telemedicine has not been reported.
A summary of a multi-institution experience detailing the potential benefits, pitfalls, and the necessary considerations to outpatient care of neurosurgical oncology patients.
There are limitations and advantages to incorporating telemedicine into the outpatient care of neuro-oncology patients. Telemedicine-specific considerations for each step and stakeholder of the appointment (physician, patient, scheduling, previsit, imaging, and physical examination) are examined.
Telemedicine, pushed to prominence during this COVID-19 pandemic, is a powerful and possibly preferential tool for the future of outpatient neuro-oncologic care
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Two effects, jet broadening and gluon bremsstrahlung induced by the
propagation of a highly energetic quark in dense QCD matter, are reconsidered
from effective theory point of view. We modify the standard Soft Collinear
Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed
to implement the interactions between the medium and the collinear fields. We
derive the Feynman rules for this Lagrangian and show that it is invariant
under soft and collinear gauge transformations. We find that the newly
constructed theory SCET recovers exactly the general result for the
transverse momentum broadening of jets. In the limit where the radiated gluons
are significantly less energetic than the parent quark, we obtain a jet
energy-loss kernel identical to the one discussed in the reaction operator
approach to parton propagation in matter. In the framework of SCET we
present results for the fully-differential bremsstrahlung spectrum for both the
incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the
soft-gluon approximation. Gauge invariance of the physics results is
demonstrated explicitly by performing the calculations in both the light-cone
and covariant gauges. We also show how the process-dependent
medium-induced radiative corrections factorize from the jet production cross
section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching
Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics
- …