817 research outputs found

    Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase

    Get PDF
    This work was supported by the Medical Research Council and the Scottish Funding Council.Influenza virus sialidase has an essential role in the virus’ life cycle. Two distinct groups of influenza A virus sialidases have been established, that differ in the flexibility of the ‘150-loop’, providing a more open active site in the apo form of the group-1 compared to group-2 enzymes. In this study we show, through a multidisciplinary approach, that novel sialic acid-based derivatives can exploit this structural difference and selectively inhibit the activity of group-1 sialidases. We also demonstrate that group-1 sialidases from drug-resistant mutant influenza viruses are sensitive to these designed compounds. Moreover, we have determined, by protein X-ray crystallography, that these inhibitors lock open the group-1 sialidase flexible 150-loop, in agreement with our molecular modelling prediction. This is the first direct proof that compounds may be developed to selectively target the pandemic A/H1N1, avian A/H5N1 and other group-1 sialidase-containing viruses, based on an open 150-loop conformation of the enzyme.Publisher PDFPeer reviewe

    A dual drug regimen synergistically blocks human parainfluenza virus infection.

    Get PDF
    International audienceHuman parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 ΌM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs

    Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors

    Get PDF
    Mammals express the sialic acids ​N-acetylneuraminic acid (​Neu5Ac) and ​N-glycolylneuraminic acid (​Neu5Gc) on cell surfaces, where they act as receptors for pathogens, including influenza A virus (IAV). ​Neu5Gc is synthesized from ​Neu5Ac by the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this enzyme is inactive and only ​Neu5Ac is produced. Ferrets are susceptible to human-adapted IAV strains and have been the dominant animal model for IAV studies. Here we show that ferrets, like humans, do not synthesize ​Neu5Gc. Genomic analysis reveals an ancient, nine-exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia members of the Carnivora. Interactions between two human strains of IAV with the sialyllactose receptor (sialic acid—α2,6Gal) confirm that the type of terminal sialic acid contributes significantly to IAV receptor specificity. Our results indicate that exclusive expression of ​Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains

    A Proline-Based Neuraminidase Inhibitor: DFT Studies on the Zwitterion Conformation, Stability and Formation

    Get PDF
    The designs of potent neuraminidase (NA) inhibitors are an efficient way to deal with the recent “2009 H1N1” influenza epidemic. In this work, density functional calculations were employed to study the conformation, stability and formation of the zwitterions of 5-[(1R,2S)-1-(acetylamino)-2-methoxy-2-methylpentyl]-4-[(1Z)-1-propenyl]-(4S,5R)-d-proline (BL), a proline-based NA inhibitor. Compared to proline, the zwitterion stability of BL is enhanced by 1.76 kcal mol−1 due to the introduction of functional groups. However, the zwitterion of BL will not represent a local minimum on the potential energy surface until the number of water molecules increases up to two (n = 2). With the addition of two and three water molecules, the energy differences between the zwitterions and corresponding canonical isomers were calculated at 3.13 and −1.54 kcal mol−1, respectively. The zwitterions of BL are mainly stabilized by the H-bonds with the water molecules, especially in the case of three water molecules where the carboxyl-O atoms are largely coordination-saturated by three H-bonds of medium strengths, causing the zwitterion stability even superior to the canonical isomer. With the presence of two and three water molecules, the energy barriers for the conversion processes from the canonical isomers to the zwitterions are equal to 4.96 and 3.13 kcal mol−1, respectively. It indicated that the zwitterion formation is facile to take place with addition of two molecules and further facilitated by more water molecules. Besides, the zwitterion formation of BL is finished in a single step, different from other NA inhibitors. Owing to the above advantages, BL is a good NA inhibitor candidate and more attention should be paid to explorations of BL-based drugs
    • 

    corecore