44 research outputs found
Statistical thermodynamics in reversible clustering of gold nanoparticles. A first step towards nanocluster heat engines
A statistical thermodynamics variational criterion is propounded to study thermal hysteresis in reversible clustering of gold (Au) nanoparticles. Experimentally, a transient equilibrium mapping analysis is employed to characterize it thermodynamically, further measurements being performed at the nanostructural and electrochemical levels (UV-Vis-NIR spectra, SLS/SAXS, zeta potential). Theoretically, it is successfully interpreted as a thermodynamic cycle, prompting that nanoclusters has potential to produce useful work from heat and paving the way to nanoclustering heat engines. By taking into account the virial expansion of hysteretic pressure, an entropy measure is deduced for a dilute system with given virial coefficients. This allows us to figure out the role of relevant interparticle potential parameters (i.e. surface potential, nanoparticle size, Debye's length, Hamaker energy) in both isothermal and isochoric variations at the onset of hysteresis. Application to spherical Au nanoparticles in watery salt solution (NaCl) is developed when an ad-hoc (DLVO) pairwise potential governs the second virial coefficient at the nanoscale. In particular, the variational criterion predicts a pressure drop between heating and cooling paths which is likely at the base of some energy redistribution (e.g. ordering/restructuring of electric double layers). We found an integrating factor that is able to numerically predict the existence of a critical value for the initial salt concentration maximizing the hysteretic area, and the effect of nanoparticle size on the cycle extent.A.A. and A.I acknowledge the Grant PID2021-123438NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, as well as financial support of Eusko Jaurlaritza, code: IT-1566-22 and from the IKUR Strategy. A. I. thanks MICINN for a Personal Técnico de Apoyo contract (PTA2017-14359-I). Correspondence of one of the authors (S.A.M.) with Dezső Boda (IASK/UP - Hungary) is kindly acknowledged. This work was supported by grant PID2019-111772RB-I00 funded by MCIN/AEI/ 10.13039/501100011033
Influence of chain topology (cyclic versus linear) on the nucleation and isothermal crystallization of poly(L-lactide) and poly(D-lactide)
In this paper, ring closure click chemistry methods have been used to produce cyclic c-PLLA and c-PDLA of a number average molecular weight close to 10 kg/mol. The effects of stereochemistry of the polymer chains and their topology on their structure, nucleation and crystallization were studied in detail employing Wide Angle X-ray Scattering (WAXS), Small Angle X-ray Scattering (SAXS), Polarized Light Optical Microscopy (PLOM) and standard and advanced Differential Scanning Calorimetry (DSC). The crystal structures of linear and cyclic PLAs are identical to each other and no differences in superstructural morphology could be detected. Cyclic PLA chains are able to nucleate much faster and to produce a higher number of nuclei in comparison to linear analogues, either upon cooling from the melt or upon heating from the glassy state. In the samples prepared in this work, a small fraction of linear or higher molecular weight cycles was detected (according to SEC analyses). The presence of such “impurities” retards spherulitic growth rates of c-PLAs making them nearly the same as those of l-PLAs. On the other hand, the overall crystallization rate determined by DSC was much larger for c-PLAs, as a consequence of the enhanced nucleation that occurs in cyclic chains. The equilibrium melting temperatures of cyclic chains were determined and found to be 5 ºC higher in comparison with values for l-PLAs. This result is a consequence of the lower entropy of cyclic chains in the melt. Self-nucleation studies demonstrated that c-PLAs have a shorter crystalline memory than linear analogues, as a result of their lower entanglement density. Successive self-nucleation and annealing (SSA) experiments reveal the remarkable ability of cyclic molecules to thicken, even to the point of crystallization with extended collapsed ring conformations. In general terms, stereochemistry had less influence on the results obtained in comparison with the dominating effect of chain topology.“UPV/EHU Infrastructure: INF 14/38”; “Mineco/FEDER: SINF 130I001726XV1/Ref: UNPV13–4E–1726” and “Mineco MAT2014-53437-C2-P”, 'Ministerio de Economia y Competitividad (MINECO), code: MAT2015-63704-P (MINECO/FEDER, UE) and by the Eusko Jaurlaritza (Basque Government), code: IT-654-13. O.C acknowledges financial support from the European Commission and Région Wallonne FEDER program (Materia Nova) and OPTI²MAT program of excellence, by the Interuniversity Attraction Pole Program (P7/05) initiated by the Belgian Science Policy office and by the FNRS-FRFC. OC is Research Associate of the F.R.S.-FNRS. Organic Synthesis and Mass Spectrometry Laboratory thanks F.R.S.-FNRS for the financial support for the acquisition of the Waters QToF Premier and Synapt-G2Si mass spectrometers and for continuing support. Finally, all authors would like to acknowledge Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2017-778092, project BIODEST for promoting cooperation between the Mons team and the UPV/EHU team
Toward Long-Term-Dispersible, Metal-Free Single-Chain Nanoparticles
We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide–alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, the presence of metal traces limits its use in a number of potential applications. To address these problems, we selected a bifunctional cross-linker molecule, sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD). DIBOD has two highly strained alkyne bonds that allow for the synthesis of metal-free SCNPs. We demonstrate the utility of this new approach by synthesizing metal-free polystyrene (PS)-SCNPs without significant aggregation issues during storage, as demonstrated by small-angle X-ray scattering (SAXS) experiments. Notably, this method paves the way for the synthesis of long-term-dispersible, metal-free SCNPs from potentially any polymer precursor decorated with azide functional groups.We gratefully acknowledge Grant PID2021-123438NB-I00 funded by MCIN/AEI/10.13039/501100011033; “ERDF A way of making Europe”, Grant TED2021-130107A-I00 funded by MCIN/AEI/10.13039/501100011033; Unión Europea “NextGenerationEU/PRTR” and Grant IT-1566-22 from Eusko Jaurlaritza (Basque Government)
Single-Crystal to Single-Crystal Reversible Transformations Induced by Thermal Dehydration in Keggin-Type Polyoxometalates Decorated with Copper(II)-Picolinate Complexes: The Structure Directing Role of Guanidinium
Three new hybrid inorganic-metalorganic compounds containing Keggin-type polyoxometalates, neutral copper(II)-picolinate complexes and guanidinium cations have been synthesized in bench conditions and characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction: the isostructural [C(NH2)(3)](4)[{XW12O40}{Cu-2(pic)(4)}] . [Cu-2(pic)(4)(H2O)](2) .6H(2)O [X = Si (1), Ge (3)] and [C(NH2)(3)]8[{SiW12O40}(2){Cu(pic)(2)}3{Cu-2(pic)4(H2O)}(2)] .8H(2)O (2). The three compounds show a pronounced two-dimensional character owing to the structure-directing role of guanidinium. In 1 and 3, layers of [{XW12O40}{Cu-2(pic)(4)}] n(4n-) hybrid POM chains and layers of [Cu-2(pic)(4)(H2O)] complexes and [C(NH2)(3)](+) cations pack alternately along the z axis. The hydrogen-bonding network established by guanidinium leads to a trihexagonal tiling arrangement of all copper(II)-picolinate species. In contrast, layers of [C(NH2)(3)](+)-linked [{SiW12O40}(2){Cu(pic)(2)}(3)] n(8n-) double chains where each Keggin cluster displays a {Cu-2(pic)(4)(H2O)} moiety pointing at the intralamellar space are observed in 2. The thermal stability of 1-3 has been studied by thermogravimetric analyses and variable temperature powder X-ray diffraction. Compounds 1 and 3 undergo single-crystal to single-crystal transformations promoted by reversible dehydration processes and the structures of the corresponding anhydrous phases 1a and 3a have been established. Despite the fact that the [Cu-2(pic)(4)(H2O)] dimeric complexes split into [Cu( pic)(2)] monomers upon dehydration, the packing remains almost unaltered thanks to the preservation of the hydrogen-bonding network established by guanidinium and its associated Kagome-type lattice. Splitting of the dimeric complexes has been correlated with the electron paramagnetic resonance spectra.This work was funded by Eusko Jaurlaritza/Gobierno Vasco (grant IT477- 10 and predoctoral fellowship to A. P.), Ministerio de Economia y Competitividad (grant MAT2013-48366-C2-2P) and Universidad del Pais Vasco UPV/EHU (grant UFI11/53). Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged
Neat Protein Single-Chain Nanoparticles from Partially Denatured BSA
The main challenge for the preparation of protein single-chain nanoparticles (SCNPs) is the natural complexity of these macromolecules. Herein, we report the suitable conditions to produce "neat" bovine serum albumin (BSA) single-chain nanoparticles (SCNPs) from partially denatured BSA, which involves denaturation in urea and intramolecular cross-linking below the overlap concentration. We use two disuccinimide ester linkers containing three and six methylene spacer groups: disuccinimidyl glutarate (DSG) and disuccinimidyl suberate (DSS), respectively. Remarkably, the degree of internal cross-linking can be followed simply and efficiently via 1H NMR spectroscopy. The associated structural changes-as probed by small-angle neutron scattering (SANS)-reveal that the denatured protein has a random-like coil conformation, which progressively shrinks with the addition of DSG or DSS, thus allowing for size control of the BSA-SCNPs with radii of gyration down to 5.4 nm. The longer cross-linker exhibits slightly more efficiency in chain compaction with a somewhat stronger size reduction but similar reactivity at a given cross-linker concentration. This reliable method is applicable to a wide range of compact proteins since most proteins have appropriate reactive amino acids and denature in urea. Critically, this work paves the way to the synthesis of "neat", biodegradable protein SCNPs for a range of applications including nanomedicine.The authors acknowledge the financial support received from the IKUR Strategy under the collaboration agreement between the Ikerbasque Foundation and the Materials Physics Center on behalf of the Department of Education of the Basque Government. Financial support by MCIN/AEI/10.13039/501100011033 and “ERDF – A way of making Europe” (grant PID2021-123438NB-I00), Eusko Jaurlaritza – Basque Government (grant IT-1566-22) and the Gipuzkoako Foru Aldundia, Programa Red Gipuzkoana de Ciencia, Tecnología e Innovación (2021-CIEN-000010-01) is gratefully acknowledged. A.I. thanks MICINN for a Personal Técnico de Apoyo contract (PTA2017-14359-I)
Monokristal-monokristal eraldaketak polioxometalatoetan oinarritutako sistemetan: termikoki aktibatutako zenbait adibide.
Kanpo-estimuluen bitartez aktibatutako fase-trantsizioak, eta haien artean kristal bakun izaera mantentzen duten kasuak, hots monokristal-monokristal (MKMK) eraldaketak, interes handikoak dira; izan ere, gai dira i) ezaugarri berriak dituzten produktuak emateko eta ii) materialaren propietateetan gertatzen diren aldaketak, egitura kristalinoak jasaten dituenekin erlazionatzeko. Polioxometalatoen (POMen) kasuan bezala, egiturei zurruntasuna ematen dieten oinarrizko unitateak erabiltzea bide egokia da prozesuan zehar gerta litekeen kristalinitatearen galera saihesteko. Gaur egun POMetan oinarritutako sistemetan aurki daitezkeen MKMK eraldaketa urrien artean, aipatzekoak dira termikoki aktibatutako adibideak. Lan honetan azken hauek laburbilduko dira eta bereziki gure ikerketa taldean prestatutako konposatuak eta haien erabilerak (katalisia eta gasen xurgapen selektiboa) goraipatuko ditugu.; Phase transitions induced by external stimuli in which crystallinity is retained, so-called single-crystal-to-single-crystal transformations (SCSC), are being widely studied because they allow for i) obtaining products with novel characteristics and ii) correlating structural changes with how a given property of the material is modified. The use of building blocks that provide robustness to the system such as polyoxometalates (POM) are a suitable option to avoid the loss of crystallinity throughout the process. Among the scarce SCSC transformations reported to date for POM-based systems, it is worth highlighting the temperature-triggered examples. This work reviews the later cases with strong focus on the compounds obtained in our research group and their applications (catalysis and selective gas sorption)
Consecutive single-crystal-to-single-crystal isomerization of novel octamolybdate anions within a microporous hybrid framework with robust water sorption properties
The 3D hybrid framework [{Cu(cyclam)}3(kMo8O27)]· 14H2O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane) undergoes sequential single-crystal-to-singlecrystal transformations upon heating to afford two
different anhydrous phases (2 a and 3a). These transitions modify the framework dimensionality and enable
the isomerization of k-octamolybdate (k-Mo8) anions
into λ (2 a) and μ (3 a) forms through metal migration.
Hydration of 3 a involves condensation of one water
molecule to the cluster to afford the γ-Mo8 isomer in 4,
which dehydrates back into 3a through the 6a intermediate. In contrast, 2a reversibly hydrates to form 5,
exhibiting the same Mo8 cluster as that of 1. It is
remarkable that three of the Mo8 clusters (k, λ and μ)
are new and that up to three different microporous
phases can be isolated from 1 (2 a, 3a, and 6a). Water
vapor sorption analyses show high recyclability and the
highest uptake values for POM-based systems. The
isotherms display an abrupt step at low humidity level
desirable for humidity control devices or water harvesting in drylands.Funded by Eusko Jaurlaritza/Gobierno Vasco (EJ/GV, grants IT1722-22 and KK-2022/00045). E.R.B. thanks EJ/GV for her doctoral fellowship (PRE_2018_1_0143)
Consecutive single-crystal-to-single-crystal isomerization of novel octamolybdate anions within a microporous hybrid framework with robust water sorption properties
The 3D hybrid framework [{Cu(cyclam)}3 (κ-Mo8 O27 )] ⋅ 14H2 O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane) undergoes sequential single-crystal-to-single-crystal transformations upon heating to afford two different anhydrous phases (2 a and 3 a). These transitions modify the framework dimensionality and enable the isomerization of κ-octamolybdate (κ-Mo8 ) anions into λ (2 a) and μ (3 a) forms through metal migration. Hydration of 3 a involves condensation of one water molecule to the cluster to afford the γ-Mo8 isomer in 4, which dehydrates back into 3 a through the 6 a intermediate. In contrast, 2 a reversibly hydrates to form 5, exhibiting the same Mo8 cluster as that of 1. It is remarkable that three of the Mo8 clusters (κ, λ and μ) are new and that up to three different microporous phases can be isolated from 1 (2 a, 3 a, and 6 a). Water vapor sorption analyses show high recyclability and the highest uptake values for POM-based systems. The isotherms display an abrupt step at low humidity level desirable for humidity control devices or water harvesting in drylands.Funded by Eusko Jaurlaritza/Gobierno Vasco (EJ/GV, grants IT1722-22 and KK-2022/00045). E.R.B. thanks EJ/GV for her doctoral fellowship (PRE_2018_1_0143). Technical and human support from SGIker (UPV/EHU) is gratefully acknowledged.Peer reviewe
Polymorphism in Non-Fullerene Acceptors Based on Indacenodithienothiophene
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Organic solar cells incorporating non-fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology-function models. Here, it is confirmed that high-performing solution-processed indacenodithienothiophene-based NFAs, i.e., ITIC and its derivatives ITIC-M, ITIC-2F, and ITIC-Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low-temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low-temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the π–π stacking direction. As the optical absorption of the structurally more disordered low-temperature phase can surpass that of the more ordered polymorphs while displaying comparable—or even higher—charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.This work was supported by the Ministerio de Ciencia e Innovacion/FEDER (under Ref. PGC2018-094620-A-I00 and PGC2018-095411-B-I00, CEX2019-000917-S, and PGC2018-095411-B-100) and the Basque Country Government (Ref. PIBA19-0051). S.M. is grateful to POLYMAT for the doctoral scholarship. The authors thank A. Arbe, A. Alonso-Mateo, and L. Hueso for their support and access to characterization tools. The authors also thank the technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF). GIWAXS experiments were performed at BL11 NCD-SWEET beamline at ALBA Synchrotron (Spain) with the collaboration of ALBA staff. J.M and E.F.-G. acknowledge support through the European Union's Horizon 2020 research and innovation program, H2020-FETOPEN 01-2018-2020 (FET-Open Challenging Current Thinking), “LION-HEARTED,” Grant Agreement No. 828984. J.M and N.S. would like to thank the financial support provided by the IONBIKE RISE project, which received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 823989. N.S., A.K., and A.B. furthermore are grateful to the U.S. National Science Foundation (NSF) for support via Project No. 1905901 within NSF's Division of Materials Research. A.S. and M.C. acknowledge financial support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program “HEROIC,” Grant Agreement No. 638059. This work was partially carried out at Polifab, the micro- and nanotechnology center of the Politecnico di Milano. C.M. thanks the Knut and Alice Wallenberg Foundation for funding through the project “Mastering Morphology for Solution-borne Electronics.” A.I. thanks MICINN for a Personal Técnico de Apoyo contract (PTA2017-14359-I) and gratefully acknowledge the financial support of the Basque Government (Research Groups IT-1175-19) and the MICINN (PGC2018-094548-B-I00, MCIU/AEI/FEDER, UE.
Funding for open access charge: Universidade da Coruña/CISUG.Gobierno Vasco; PIBA19-0051Gobierno Vasco; IT-1175-19Estados Unidos. National Science Foundation; 190590