171 research outputs found

    Effects of cranial electrotherapy stimulation on resting state brain activity

    Get PDF
    Cranial electrotherapy stimulation (CES) is a U.S. Food and Drug Administration (FDA)-approved treatment for insomnia, depression, and anxiety consisting of pulsed, low-intensity current applied to the earlobes or scalp. Despite empirical evidence of clinical efficacy, its mechanism of action is largely unknown. The goal was to characterize the acute effects of CES on resting state brain activity. Our primary hypothesis was that CES would result in deactivation in cortical and subcortical regions. Eleven healthy controls were administered CES applied to the earlobes at subsensory thresholds while being scanned with functional magnetic resonance imaging in the resting state. We tested 0.5- and 100-Hz stimulation, using blocks of 22 sec “on” alternating with 22 sec of baseline (device was “off”). The primary outcome measure was differences in blood oxygen level dependent data associated with the device being on versus baseline. The secondary outcome measures were the effects of stimulation on connectivity within the default mode, sensorimotor, and fronto-parietal networks. Both 0.5- and 100-Hz stimulation resulted in significant deactivation in midline frontal and parietal regions. 100-Hz stimulation was associated with both increases and decreases in connectivity within the default mode network (DMN). Results suggest that CES causes cortical brain deactivation, with a similar pattern for high- and low-frequency stimulation, and alters connectivity in the DMN. These effects may result from interference from high- or low-frequency noise. Small perturbations of brain oscillations may therefore have significant effects on normal resting state brain activity. These results provide insight into the mechanism of action of CES, and may assist in the future development of optimal parameters for effective treatment

    Postmenopausal hormones and sleep quality in the elderly: a population based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sleep disturbance and insomnia are commonly reported by postmenopausal women. However, the relationship between hormone therapy (HT) and sleep disturbances in postmenopausal community-dwelling adults is understudied. Using data from the multicenter Study of Osteoporotic Fractures (SOF), we tested the relationship between HT and sleep-wake estimated from actigraphy.</p> <p>Methods</p> <p>Sleep-wake was ascertained by wrist actigraphy in 3,123 women aged 84 ± 4 years (range 77-99) from the Study of Osteoporotic Fractures (SOF). This sample represents 30% of the original SOF study and 64% of participants seen at this visit. Data were collected for a mean of 4 consecutive 24-hour periods. Sleep parameters measured objectively included total sleep time, sleep efficiency (SE), sleep latency, wake after sleep onset (WASO), and nap time. All analyses were adjusted for potential confounders (age, clinic site, race, BMI, cognitive function, physical activity, depression, anxiety, education, marital status, age at menopause, alcohol use, prior hysterectomy, and medical conditions).</p> <p>Results</p> <p>Actigraphy measurements were available for 424 current, 1,289 past, and 1,410 never users of HT. Women currently using HT had a shorter WASO time (76 vs. 82 minutes, P = 0.03) and fewer long-wake (≥ 5 minutes) episodes (6.5 vs. 7.1, P = 0.004) than never users. Past HT users had longer total sleep time than never users (413 vs. 403 minutes, P = 0.002). Women who never used HT had elevated odds of SE <70% (OR,1.37;95%CI,0.98-1.92) and significantly higher odds of WASO ≥ 90 minutes (OR,1.37;95%CI,1.02-1.83) and ≥ 8 long-wake episodes (OR,1.58;95%CI,1.18-2.12) when compared to current HT users.</p> <p>Conclusions</p> <p>Postmenopausal women currently using HT had improved sleep quality for two out of five objective measures: shorter WASO and fewer long-wake episodes. The mechanism behind these associations is not clear. For postmenopausal women, starting HT use should be considered carefully in balance with other risks since the vascular side-effects of hormone replacement may exceed its beneficial effects on sleep.</p

    Competitive Tendering In The Netherlands: Central Planning Or Functional Specifications?

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis

    Get PDF
    Rationale: An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. Objectives: The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. Methods: A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21–45 Hz) was investigated (n=13 pairs+4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n=15). Results: In the resting state, there was a significant condition × frequency interaction (p=0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21–27 Hz] and increased low gamma [27–45 Hz]). There was also a condition × frequency × location interaction (p=0.006), such that the reduction in 21–27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27–45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r=0.429, p=0.042). In the motor task, there was a main effect of THC to increase 65–130-Hz ERS (p=0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85–130-Hz band (p=0.02) and not the 65–85-Hz band. Conclusions: The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state

    Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis

    Full text link

    Hippocampal Proteomic and Metabonomic Abnormalities in Neurotransmission, Oxidative Stress, and Apoptotic Pathways in a Chronic Phencyclidine Rat Model

    Full text link

    Recomendações para o registro/interpretação do mapeamento topográfico do eletrencefalograma e potenciais evocados: Parte II: Correlações clínicas

    Full text link
    corecore